三垂线定理及其应用.ppt

上传人:豆**** 文档编号:50519032 上传时间:2022-10-15 格式:PPT 页数:12 大小:953.50KB
返回 下载 相关 举报
三垂线定理及其应用.ppt_第1页
第1页 / 共12页
三垂线定理及其应用.ppt_第2页
第2页 / 共12页
点击查看更多>>
资源描述

《三垂线定理及其应用.ppt》由会员分享,可在线阅读,更多相关《三垂线定理及其应用.ppt(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、三垂线定理及其应用三垂线定理及其应用一、一、一、一、三线概念三线概念三线概念三线概念:平面的斜线、垂线、射影平面的斜线、垂线、射影平面的斜线、垂线、射影平面的斜线、垂线、射影aAPo如图如图PO是平面是平面的斜线的斜线,O为斜足为斜足;PA是平面是平面的垂线的垂线,A为垂足为垂足;AO是是PO在平面在平面内的射内的射影影.三、知识运用三、知识运用例1.如图,PD 平面ABC,AC=BC,D为AB的中点,求证AB PC.PABCD证明:PD平面ABC,DC为PC在平面的射影,而ABC为等腰三角形,D为AB的中点,AB CD AB PC 例例例例2.2.2.2.如图,已知正方体如图,已知正方体如图

2、,已知正方体如图,已知正方体ABCD-AABCD-AABCD-AABCD-A1 1 1 1B B B B1 1 1 1C C C C1 1 1 1D D D D1 1 1 1中,连结中,连结中,连结中,连结 BD BD BD BD1 1 1 1,ACACACAC,CBCBCBCB1 1 1 1,B B B B1 1 1 1A A A A,求证:,求证:,求证:,求证:BDBDBDBD1 1 1 1平面平面平面平面ABABABAB1 1 1 1C C C C DD DD DD DD1 1 1 1平面平面平面平面ABCD ABCD ABCD ABCD BD BD BD BD是斜线是斜线是斜线是斜线

3、D D D D1 1 1 1B B B B在平面在平面在平面在平面ABCDABCDABCDABCD上的射影上的射影上的射影上的射影 ABCDABCD是正方形是正方形是正方形是正方形ACACBDBD (AC(AC(AC(AC垂直射影垂直射影垂直射影垂直射影BD)BD)BD)BD),ACACACACBDBD1 1 A1D1C1B1ADCB同理同理同理同理:BABA1 1是斜线是斜线是斜线是斜线BDBD1 1在平面在平面在平面在平面ABBABB1 1A A1 1上的射影上的射影上的射影上的射影,AB,AB1 1 BDBD1 1 而而AC ABAB1 1=A BDBDBDBD1 1 1 1平面平面平面

4、平面ABABABAB1 1 1 1C C C C证明:连结证明:连结证明:连结证明:连结BDBDBDBD、A A A A1 1 1 1B B B B例例例例3.3.3.3.道路旁有一条河,彼岸有电塔道路旁有一条河,彼岸有电塔道路旁有一条河,彼岸有电塔道路旁有一条河,彼岸有电塔ABABABAB,高,高,高,高15m15m15m15m,只有测角器,只有测角器,只有测角器,只有测角器和皮尺作测量工具,不过河能否求出电塔顶和皮尺作测量工具,不过河能否求出电塔顶和皮尺作测量工具,不过河能否求出电塔顶和皮尺作测量工具,不过河能否求出电塔顶A A A A与道路的距离与道路的距离与道路的距离与道路的距离?(测

5、角器只能测水平面角测角器只能测水平面角测角器只能测水平面角测角器只能测水平面角)解:在道路边取一点解:在道路边取一点解:在道路边取一点解:在道路边取一点C C C C,使使使使BCBCBCBC与道边所成水平角等于与道边所成水平角等于与道边所成水平角等于与道边所成水平角等于90909090,B BA AC C9090 BCBC是是是是ACAC的射影的射影的射影的射影,且且且且CDCDBC,BC,CDCDAC(AC(三垂线定理三垂线定理三垂线定理三垂线定理)因此斜线因此斜线因此斜线因此斜线ACAC的长度就是电塔顶的长度就是电塔顶的长度就是电塔顶的长度就是电塔顶A A与道路的距离。与道路的距离。与道

6、路的距离。与道路的距离。B BA AC C9090 BC=BC=BC=BC=a米米米米,在直角在直角在直角在直角ABCABCABCABC中中中中,ACACACAC2 2 2 2=AB=AB=AB=AB2 2 2 2+BC+BC+BC+BC2 2 2 2,AC=15 AC=15 AC=15 AC=152 2 2 2+a+a+a+a2 2 2 2 米米米米 答:电塔顶答:电塔顶答:电塔顶答:电塔顶A A A A与道路的距离是与道路的距离是与道路的距离是与道路的距离是 米米。再在道路边取一点再在道路边取一点再在道路边取一点再在道路边取一点D D D D,使,使,使,使CDB=45,CDB=45,则则

7、CD=CB可测得可测得可测得可测得C C、D D的距离等于的距离等于的距离等于的距离等于a a米米米米,D4545例4.如图,长方体 ABCD-AABCD-A1 1B B1 1C C1 1D D1 1中中,AB=AD=2 ,AA1=,E,F分别为AB和AD的中点,求平面A1EF 和平面ABCD所成二面角的大小?ABCDEFA1B B1 1C1D1解:连接BD,AC,AC交EF于G,G连接A1G 底面底面底面底面ABCDABCD是正方形,是正方形,是正方形,是正方形,ACACBD,BD,而而而而E,FE,F为为为为AB和和AD中点中点中点中点,EFEFBD,BD,EF EFACAC 又因为又因为

8、AG为为A1G在平面在平面ABCD 上的射影上的射影.(由由三垂线定理三垂线定理三垂线定理三垂线定理)EF EFA A1 1G,G,则则则则A A1 1GAGA为为为为二面角的二面角的平平平平面角面角面角面角.计算得计算得:二面角的大小为二面角的大小为:60o 三垂线定理:在平面内的一条直线,如果三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。和这条斜线垂直。四、小四、小四、小四、小 结结结结 2.2.2.2.定理的主要应用定理的主要应用定理的主要应用定理的主要应用:证明线线垂直证明线线垂直证明线线垂直证明线线垂直,线面垂直线面垂直线面垂直线面垂直,求点到线的距离求点到线的距离求点到线的距离求点到线的距离,二面角大小二面角大小二面角大小二面角大小,1.1.1.1.定理中四条线均针对同一平面而言定理中四条线均针对同一平面而言定理中四条线均针对同一平面而言定理中四条线均针对同一平面而言,3.3.3.3.证明程序分三个步骤证明程序分三个步骤证明程序分三个步骤证明程序分三个步骤:“:“一垂二射三证一垂二射三证一垂二射三证一垂二射三证”,”,计算程序分三个步骤计算程序分三个步骤计算程序分三个步骤计算程序分三个步骤:“:“一作二证三算一作二证三算一作二证三算一作二证三算”.”.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁