《组合第二课时.ppt》由会员分享,可在线阅读,更多相关《组合第二课时.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、组合第二课时组合第二课时组合数公式组合数公式:从从 n 个不同元中取出个不同元中取出m个元素的排列数个元素的排列数 知识回顾知识回顾性质2mnmnmnCCC11问题2、一个口袋内装有7个不同的白球和1个黑球(1)从口袋内取出3个球,共有多少种取法?(2)从口袋内取出3个球,其中含有1个黑球,共有多少种取法?(3)从口袋内取出3个球,没有黑球,共有多少种不同的取法?性质1mnnmnCC性质应用1、计算2、解方程3、计算4或71方程方程 的解集为(的解集为()2式子式子 的值的个数为的值的个数为 ()A 1 B 2 C3 D 43化简化简4跟踪练习DA0190例例1.1.在产品检验中,常从产品中抽
2、出一部分在产品检验中,常从产品中抽出一部分进行检查进行检查.现有现有100100件产品,其中件产品,其中3 3件次品,件次品,9797件件正品正品.要抽出要抽出5 5件件进行检查,根据下列各种要求,进行检查,根据下列各种要求,各有多少种不同的抽法?各有多少种不同的抽法?(1)无任何限制条件;无任何限制条件;(2)全是正品;全是正品;(3)只有只有2件正品;件正品;(4)至少有至少有1件次品;件次品;(5)至多有至多有2件次品;件次品;(6)次品最多次品最多.解答:解答:(1 1)(2 2)(3 3)(4 4),或,或(5 5)(6 6)反思反思:“至少至少”“至多至多”的问题,的问题,通常用分
3、类法通常用分类法 或间接法求解。或间接法求解。练习练习1 1、在在100100件产品中有件产品中有9898件合格品,件合格品,2 2件次品。件次品。产品检验时产品检验时,从从100100件产品中任意抽出件产品中任意抽出3 3件。件。(1)(1)一共有多少种不同的抽法一共有多少种不同的抽法?(2)(2)抽出的抽出的3 3件中恰好有件中恰好有1 1件是次品的抽法有多少种件是次品的抽法有多少种?(3)(3)抽出的抽出的3 3件中至少有件中至少有1 1件是次品的抽法有多少种件是次品的抽法有多少种?练习练习2按下列条件,从按下列条件,从12人中选出人中选出5人,有多少种不同选法?人,有多少种不同选法?(
4、1)甲、乙、丙三人必须当选;)甲、乙、丙三人必须当选;(2)甲、乙、丙三人不能当选;)甲、乙、丙三人不能当选;(3)甲必须当选,乙、丙不能当选;)甲必须当选,乙、丙不能当选;(4)甲、乙、丙三人只有一人当选;)甲、乙、丙三人只有一人当选;(5)甲、乙、丙三人至多)甲、乙、丙三人至多2人当选;人当选;(6)甲、乙、丙三人至少)甲、乙、丙三人至少1人当选;人当选;例例3 36 6本不同的书,按下列要求各有多少种本不同的书,按下列要求各有多少种不同的选法:不同的选法:(1 1)分给甲、乙、丙三人,每人)分给甲、乙、丙三人,每人2 2本;本;解:解:(1 1)根据分步计数原理得到:)根据分步计数原理得
5、到:种种例例36本不同的书,按下列要求各有多少种本不同的书,按下列要求各有多少种不同的选法:不同的选法:(2)分为三份,每份分为三份,每份2本;本;解析:解析:解析:解析:(2)(2)分给甲、乙、丙三人,每人两本有分给甲、乙、丙三人,每人两本有分给甲、乙、丙三人,每人两本有分给甲、乙、丙三人,每人两本有 种种种种方法,这个过程可以分两步完成:第一步分为三份,每方法,这个过程可以分两步完成:第一步分为三份,每方法,这个过程可以分两步完成:第一步分为三份,每方法,这个过程可以分两步完成:第一步分为三份,每份两本,设有份两本,设有份两本,设有份两本,设有x x种方法;第二步再将这三份分给甲、乙、种方
6、法;第二步再将这三份分给甲、乙、种方法;第二步再将这三份分给甲、乙、种方法;第二步再将这三份分给甲、乙、丙三名同学有丙三名同学有丙三名同学有丙三名同学有 种方法根据分步计数原理种方法根据分步计数原理种方法根据分步计数原理种方法根据分步计数原理所以所以 可得:可得:可得:可得:因此,分为三份,每份两本一共有因此,分为三份,每份两本一共有因此,分为三份,每份两本一共有因此,分为三份,每份两本一共有1515种方法种方法种方法种方法所以所以点评:点评:本题是分组中的本题是分组中的“平均分组平均分组”问题问题 一般地:将一般地:将mn个元素均匀分成个元素均匀分成n组(每组组(每组m个元素)个元素),共有共有 种方法种方法例例3 36 6本不同的书,按下列要求各有多少种不同本不同的书,按下列要求各有多少种不同的选法:的选法:(3 3)分为三份,一份)分为三份,一份1 1本,一份本,一份2 2本,一份本,一份3 3本;本;(4 4)分给甲、乙、丙三人,一人)分给甲、乙、丙三人,一人1 1本,一人本,一人2 2本,本,一人一人3 3本;本;解:解:(3 3)这是)这是“不均匀分组不均匀分组”问题,一共有问题,一共有 种方法种方法(4 4)在()在(3 3)的基础上再进行全排列,所以一共有)的基础上再进行全排列,所以一共有 种方法种方法作业:习题1.2