方差分析 课件.ppt

上传人:石*** 文档编号:50406043 上传时间:2022-10-15 格式:PPT 页数:77 大小:1.74MB
返回 下载 相关 举报
方差分析 课件.ppt_第1页
第1页 / 共77页
方差分析 课件.ppt_第2页
第2页 / 共77页
点击查看更多>>
资源描述

《方差分析 课件.ppt》由会员分享,可在线阅读,更多相关《方差分析 课件.ppt(77页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、关于方差分析 第1页,此课件共77页哦第九章第九章 方差分析方差分析(ANOVA)第2页,此课件共77页哦方差分析又称为变异分析(方差分析又称为变异分析(analysis of variance,ANOVA),是由斯内德克(),是由斯内德克(George Waddel Snedecor)提出的一种方法。)提出的一种方法。方差分析通过对方差分析通过对多组平均数多组平均数多组平均数多组平均数的的差异差异差异差异进行显著性检进行显著性检验,分析实验数据中验,分析实验数据中不同来源不同来源不同来源不同来源的的变异变异变异变异对总变异影响的对总变异影响的大小。大小。第3页,此课件共77页哦t t检验法适

2、用于样本平均数与总体平均数及两样本平均数间的差异检验法适用于样本平均数与总体平均数及两样本平均数间的差异显著性检验显著性检验,但在生产和科学研究中经常会遇到比较但在生产和科学研究中经常会遇到比较 多个处多个处理优劣的问题,理优劣的问题,即需进行多个平均数间的差异显著性检验即需进行多个平均数间的差异显著性检验(K3)(K3)。这时,若仍采用。这时,若仍采用t t检验法就不适宜了。这是因为:检验法就不适宜了。这是因为:第4页,此课件共77页哦 1、检验过程烦琐、检验过程烦琐 例如,一试验包含例如,一试验包含5个处理,采用个处理,采用t检验法要进行检验法要进行10次两两平均次两两平均数的差异显著性检

3、验;若有数的差异显著性检验;若有k个处理,则要作个处理,则要作 k(k-1)/2次类似次类似的检验。的检验。第5页,此课件共77页哦2、无统一的试验误差,误差估计的精确性和检验的灵敏性低、无统一的试验误差,误差估计的精确性和检验的灵敏性低 对同一试验的多个处理进行比较时,应该有一个统一的试验误对同一试验的多个处理进行比较时,应该有一个统一的试验误差的估计值。若用差的估计值。若用 t 检验法作两两比较,由于每次比较需计算一个检验法作两两比较,由于每次比较需计算一个s,故使得各次比较误差的估计不统一,同时没有充分利用资料,故使得各次比较误差的估计不统一,同时没有充分利用资料所提供的信息而使误差估计

4、的精确性降低,从而降低检验的灵所提供的信息而使误差估计的精确性降低,从而降低检验的灵敏性。敏性。第6页,此课件共77页哦 例如,试验有例如,试验有5个处理个处理,每个处理,每个处理 重复重复 6次,共有次,共有30个观测值。个观测值。进行进行t检验时,每次只能利用两个处理共检验时,每次只能利用两个处理共12个观测值估计试个观测值估计试验误差验误差,误差自由度为,误差自由度为 2(6-1)=10;若利用整个试验的;若利用整个试验的30个观个观测值估计试验误差测值估计试验误差,显然估计的精确性高,且误差自由,显然估计的精确性高,且误差自由度为度为5(6-1)=25。可见,在用。可见,在用t检法进行

5、检验时检法进行检验时,由于估计误差,由于估计误差的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖的精确性低,误差自由度小,使检验的灵敏性降低,容易掩盖差异的显著性。差异的显著性。第7页,此课件共77页哦3、这种两两比较会随着样本组数的增加而加大犯、这种两两比较会随着样本组数的增加而加大犯型错误的概率型错误的概率用用t 检验法进行检验法进行4个处理平均数间的差异显著性检验,若两两比个处理平均数间的差异显著性检验,若两两比较推断正确的概率为较推断正确的概率为95%,则所有比较都正确的概率为则所有比较都正确的概率为0.956=0.74,则降低了推断的可靠性。则降低了推断的可靠性。第8页,此课件

6、共77页哦几个常用术语几个常用术语:1、试验指标试验指标(experimental index)为衡量试验结果的好坏或处理效应的高低为衡量试验结果的好坏或处理效应的高低,在试验中具体测定的性,在试验中具体测定的性状或观测的项目称为试验指标。由于试验目的不同状或观测的项目称为试验指标。由于试验目的不同,选择的试验,选择的试验指标也不相同。指标也不相同。第9页,此课件共77页哦2、试验因素试验因素(experimental factor)试验中所研究的影响试验指标的因素叫试验因素。试验中所研究的影响试验指标的因素叫试验因素。当试验中考察的因素只有一个时,称为当试验中考察的因素只有一个时,称为单因素

7、试验单因素试验;若同时研究两个或两个以上的因素对试验指标的影响时,则称若同时研究两个或两个以上的因素对试验指标的影响时,则称为为两因素或多因素试验两因素或多因素试验。试验因素常用大写字母。试验因素常用大写字母A、B、C、等表示。等表示。第10页,此课件共77页哦 3、因素水平因素水平(level of factor)试验因素所处的某种特定状态或数量等级称为试验因素所处的某种特定状态或数量等级称为因素水平因素水平,简,简称称水平水平。第11页,此课件共77页哦4、试验处理试验处理(treatment)事先设计好的实施在试验单位上的具体项目叫试验处事先设计好的实施在试验单位上的具体项目叫试验处理,

8、简称处理。理,简称处理。在单因素试验中,实施在试验单位上的具体项目就是试在单因素试验中,实施在试验单位上的具体项目就是试验因素的某一水平。进行单因素试验时,试验因素的一验因素的某一水平。进行单因素试验时,试验因素的一个水平就是一个处理。个水平就是一个处理。在多因素试验时,试验因素的一个水平组合就是一个在多因素试验时,试验因素的一个水平组合就是一个处理。处理。第12页,此课件共77页哦5 5、重复重复(repetition)(repetition)在试验中,将一个处理实施在两个或两个以上的试验单位上,在试验中,将一个处理实施在两个或两个以上的试验单位上,称为处理的重复数。称为处理的重复数。第13

9、页,此课件共77页哦第一节第一节 方差分析的基本原理及步骤方差分析的基本原理及步骤第14页,此课件共77页哦一、方差分析的基本原理:综合的一、方差分析的基本原理:综合的F F检验检验(一)综合的虚无假设与部分虚无假设(一)综合的虚无假设与部分虚无假设1.1.综合的虚无假设综合的虚无假设样本所归属的总体的平均数相等,即样本所归属的总体的平均数相等,即 H H0 0:1 1=2 2=3 32.2.此为部分虚无假设此为部分虚无假设 组间的虚无假设组间的虚无假设第15页,此课件共77页哦(二)方差的可分解性(可加性)(二)方差的可分解性(可加性)1.1.可加性可加性方差分析作为一种统计方法,是把实验数

10、据的方差分析作为一种统计方法,是把实验数据的总变异分解为若干个不同来源的分量。因而它所依据总变异分解为若干个不同来源的分量。因而它所依据的基本原理是的基本原理是变异变异变异变异的的可加性可加性可加性可加性。第16页,此课件共77页哦即每一个数据与数据的总体平均数差的平方和,可以分解为即每一个数据与数据的总体平均数差的平方和,可以分解为每每一组数据各自的离差平方和一组数据各自的离差平方和与由与由各组数据的平均数组成的一组各组数据的平均数组成的一组数据的离差平方和数据的离差平方和两部分。前者表达的是两部分。前者表达的是组内差异组内差异,即每组数,即每组数据中各个数据之间的差异,也就是据中各个数据之

11、间的差异,也就是个体差异个体差异,表达的是,表达的是抽样误抽样误差或随机误差程度差或随机误差程度;后者表达的是;后者表达的是组间差异组间差异,即,即各组各组平均数之平均数之间的差异间的差异,表达的是实验操纵的差异程度,实验操纵即指自变量的,表达的是实验操纵的差异程度,实验操纵即指自变量的操纵,这两部分差异之间相互独立。操纵,这两部分差异之间相互独立。第17页,此课件共77页哦可用公式表示为:可用公式表示为:SST=SSB+SSw如:欲观察某因素的三个水平对被试是否产生相同的影响:如:欲观察某因素的三个水平对被试是否产生相同的影响:组一:组一:A、A、A、A、A水平一水平一 组二:组二:B、B、

12、B、B、B水平二水平二 组三:组三:C、C、C、C、C水平三水平三 总组:总组:A、A、A、A、A、B、B、B、B、B、C、C、C、C、C第18页,此课件共77页哦2.总体变异的构成总体变异的构成 总体变异总体变异 组间变异:组间变异:组内变异:组内变异理论上要求齐性,实际计算取其均组内变异:组内变异理论上要求齐性,实际计算取其均值值第19页,此课件共77页哦3.3.方差的基本公式方差的基本公式一般总体方差称方差,样本方差称均方一般总体方差称方差,样本方差称均方能使变量发生变异的原因很多,这些原因我们都将其称为变异因素能使变量发生变异的原因很多,这些原因我们都将其称为变异因素或变异来源。或变异

13、来源。第20页,此课件共77页哦方差分析就是发现各类方差分析就是发现各类变异因素相对重要性变异因素相对重要性的一种方法的一种方法方差分析的思路就是:方差分析的思路就是:把整个试验(设有把整个试验(设有 k k 个总体)的样本资料作个总体)的样本资料作为一个整体来考虑为一个整体来考虑。把整个试验的总变异按照变异的来源分解成不同因素的变异把整个试验的总变异按照变异的来源分解成不同因素的变异。由于方。由于方差等于平方和除以自由度,因此总方差分解成各因素的方差,就差等于平方和除以自由度,因此总方差分解成各因素的方差,就是将是将形成总方差的平方和和自由度分解为各因素的平方和和自由形成总方差的平方和和自由

14、度分解为各因素的平方和和自由度度。然后对各个因素的方差作出数量上的估计,从而发现各个。然后对各个因素的方差作出数量上的估计,从而发现各个因素的方差的相对重要程度。因素的方差的相对重要程度。第21页,此课件共77页哦从总方差中除去各可控因素所引起的方差后,剩余方差又可以准确从总方差中除去各可控因素所引起的方差后,剩余方差又可以准确地估计试验误差,作为统计假设检验的依据地估计试验误差,作为统计假设检验的依据因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,因此,方差分析可以帮助我们抓住试验的主要矛盾和技术关键,发现主要的变异来源,从而抓住主要的、实质性的东西。发现主要的变异来源,从而抓住主要

15、的、实质性的东西。第22页,此课件共77页哦4.4.平方和的剖分平方和的剖分第23页,此课件共77页哦第24页,此课件共77页哦第25页,此课件共77页哦第26页,此课件共77页哦第27页,此课件共77页哦SS(sum of squares)表示平方和)表示平方和SST(the sum of squares total)总平方和,一个试验中的总)总平方和,一个试验中的总变异。变异。SSB(sum of squares between groups)组间平方和,表示由于)组间平方和,表示由于不同的实验处理而造成的变异。(主试)不同的实验处理而造成的变异。(主试)SSW(sum of square

16、s within group)试验误差造成的变异。)试验误差造成的变异。(被试)(被试)第28页,此课件共77页哦 SST=SSB+SSW总变异总变异=组间变异组间变异+组内变异组内变异总变异(总变异(SST)是将所有被试的数值作为一个整体考虑到的结果,是)是将所有被试的数值作为一个整体考虑到的结果,是用所有被试的因变量的值计算出来的。用所有被试的因变量的值计算出来的。组间变异(组间变异(SSB)主要是因为接受不同的实验处理而造成的各组)主要是因为接受不同的实验处理而造成的各组之间的变异。用两个平均数的离差表示。之间的变异。用两个平均数的离差表示。组内变异(组内变异(SSW)指组内各被试因变量

17、的差异范围。)指组内各被试因变量的差异范围。第29页,此课件共77页哦5.5.组间方差(组间均方)与组内方差(组内均方)组间方差(组间均方)与组内方差(组内均方)第30页,此课件共77页哦6.自由度的分解自由度的分解在计算处理间平方和时,各处理均数在计算处理间平方和时,各处理均数 要受要受 这一条件的约束,故处理间自由度为处理数减这一条件的约束,故处理间自由度为处理数减1,即,即k-1。处理间自由度记为。处理间自由度记为dfB,即,即dfB=k-1。在计算处理内平方和时,每组自由度为在计算处理内平方和时,每组自由度为n-1,共有共有k组,故组,故处理内自由度处理内自由度k(n-1),处理内自由

18、度记为处理内自由度记为dfW,即,即dfW=k(n-1)=kn-k。第31页,此课件共77页哦第32页,此课件共77页哦7 7、方差分析、方差分析方差之间的差异分析用方差之间的差异分析用F F检验,因此,组间与组内方差的分析也用检验,因此,组间与组内方差的分析也用F F检验。方差分析关注的是组间均方是否显著大于组内均方。检验。方差分析关注的是组间均方是否显著大于组内均方。因此,常用作单侧检验。因此,常用作单侧检验。第33页,此课件共77页哦kjkj 表明数据的总变异基本上是有不同的实验处理造成的表明数据的总变异基本上是有不同的实验处理造成的(不同的实验处理间存在显著差异)(不同的实验处理间存在

19、显著差异)表明数据的总变异基本上是有实验误差和个体误差造成的,表明数据的总变异基本上是有实验误差和个体误差造成的,与不同的实验处理关系不大(不同的实验处理间不存在显著差异)与不同的实验处理关系不大(不同的实验处理间不存在显著差异)。第34页,此课件共77页哦二、方差分析的基本假设二、方差分析的基本假设1 1总体总体正态正态正态正态分布分布2 2各实验处理是随机的且相互各实验处理是随机的且相互独立独立独立独立(一般情况下(一般情况下都能满足)都能满足)3 3各实验处理内各实验处理内方差一致方差一致方差一致方差一致(需要进行检验)(需要进行检验)最为重要的假定最为重要的假定第35页,此课件共77页

20、哦三、方差齐性检验三、方差齐性检验1.1.哈特莱最大哈特莱最大F F比率法比率法找出要比较的组内方差的最大值与最小值。最大方差找出要比较的组内方差的最大值与最小值。最大方差与最小方差无显著差异即为方差齐性。与最小方差无显著差异即为方差齐性。第36页,此课件共77页哦四、方差分析的基本步骤四、方差分析的基本步骤第37页,此课件共77页哦(一)提出假设(一)提出假设(二)选择检验统计量并计算(二)选择检验统计量并计算 1分解平方和分解平方和 总平方和总平方和SST 组间平方和组间平方和SSB 组内平方和组内平方和SSW第38页,此课件共77页哦 2分解自由度分解自由度df总自由度:总自由度:dfT

21、=nk-1组间自由度:组间自由度:dfB=k-1组内自由度组内自由度:dfW=nk-k组内自由度组内自由度的的计算计算(1)不同实验处理人数相同时)不同实验处理人数相同时每组自由度每组自由度n1-1,n2-1,n3-1nk-1组内自由度组内自由度n1-1+n2-1+n3-1+nk-1,因为,因为n1=n2=n3=nk,所以为,所以为K(n-1)(2)不同实验处理人数不相同时)不同实验处理人数不相同时每组自由度每组自由度n1-1,n2-1,n3-1nk-1组内自由度组内自由度 n1-1+n2-1+n3-1+nk-1第39页,此课件共77页哦 3计算方差计算方差MSMSB=SSB/dfB和和 MS

22、W=SSW/dfW 4 4计算计算F F值值F=MSB/MSW(三)作出统计结论(三)作出统计结论1.1.显著性水平显著性水平2.2.临界水平临界水平F F值值3.3.比较推论比较推论第40页,此课件共77页哦(四)陈列方差分析表(四)陈列方差分析表变异(差变异(差异)来源异)来源平方和平方和(SS)自由度自由度(df)均方均方(MS)Fp组间组间SSBdfB=k-1MSBFp组内组内SSWdfW=nk-kMSW总变异总变异SSTdfT=nk-1MST第41页,此课件共77页哦例:研究人员采用四种不同的心理治疗方案,对每个志愿参加例:研究人员采用四种不同的心理治疗方案,对每个志愿参加治疗的患者

23、进行心理治疗。他们用录音机记录了每个被试在治疗的患者进行心理治疗。他们用录音机记录了每个被试在一段时间中所讲的词数。由于录音的困难每种方案记录的人一段时间中所讲的词数。由于录音的困难每种方案记录的人数各不相同,原始数据见表数各不相同,原始数据见表1 1。问这几种方案是否有差异?。问这几种方案是否有差异?第42页,此课件共77页哦序号序号治疗方案治疗方案X1X2X3X4130 90050 250018 32488 7744274 547638 144456 313678 6084346 211666 435634 115660 3600458 336462 384424 57676 577656

24、2 384444 193666 4356638 144458 336452 2704780 6400计算表1第43页,此课件共77页哦1 1提出假设提出假设H0:1234H1:至少有两个总体平均数不等至少有两个总体平均数不等2选择检验统计量并计算选择检验统计量并计算假定四组记录数据是从四个正态总体中抽出的独立样本,对多假定四组记录数据是从四个正态总体中抽出的独立样本,对多个独立样本平均数的差异进行显著性检验,应采用完全随机个独立样本平均数的差异进行显著性检验,应采用完全随机设计的方差分析。设计的方差分析。第44页,此课件共77页哦第45页,此课件共77页哦(1)(1).计算平方和:计算平方和:

25、组间平方和组内平方和总平方和第46页,此课件共77页哦(2)(2)计算自由度计算自由度组间自由度组内自由度总自由度第47页,此课件共77页哦(3)(3)计算方差计算方差组间方差 组内方差(4)(4)(4)(4)计算值计算值计算值计算值 第48页,此课件共77页哦3 3 3 3做统计决断做统计决断做统计决断做统计决断,列方差分析表列方差分析表列方差分析表列方差分析表变异变异来源来源平方和平方和自由度自由度方差方差F F 值值概率概率组间组间变异变异2850.43950.13.77*P F 0.05(dfB,dfW)=3.48,p0.05。存在显著差异。存在显著差异。第56页,此课件共77页哦4.

26、4.列出方差分析表列出方差分析表第57页,此课件共77页哦二、各实验处理组样本容量不同二、各实验处理组样本容量不同例:研究人员采用四种不同的心理治疗方案,对每个志愿参加治例:研究人员采用四种不同的心理治疗方案,对每个志愿参加治疗的患者进行心理治疗。他们用录音机记录了每个被试在一段疗的患者进行心理治疗。他们用录音机记录了每个被试在一段时间中所讲的词数。由于录音的困难每种方案记录的人数各不时间中所讲的词数。由于录音的困难每种方案记录的人数各不相同,原始数据见表相同,原始数据见表1 1。问这几种方案是否有差异?。问这几种方案是否有差异?第58页,此课件共77页哦1 1提出假设提出假设H0:1234H

27、1:至少有两个总体平均数不等至少有两个总体平均数不等2选择检验统计量并计算选择检验统计量并计算假定四组记录数据是从四个正态总体中抽出的独立样本,对假定四组记录数据是从四个正态总体中抽出的独立样本,对多个独立样本平均数的差异进行显著性检验,应采用完全多个独立样本平均数的差异进行显著性检验,应采用完全随机设计的方差分析。随机设计的方差分析。第59页,此课件共77页哦第60页,此课件共77页哦(1)(1).计算平方和:计算平方和:组间平方和组内平方和总平方和第61页,此课件共77页哦(2)(2)计算自由度计算自由度组间自由度组内自由度总自由度第62页,此课件共77页哦(3)(3)计算方差计算方差组间

28、方差 组内方差(4)(4)(4)(4)计算值计算值计算值计算值 第63页,此课件共77页哦3 3做统计决断做统计决断,列方差分析表列方差分析表变异变异来源来源平方和平方和自由度自由度方差方差F F 值值概率概率组间组间变异变异2850.43950.13.77*P0.05组内组内变异变异4786.519251.9总变异总变异7636.922表93 四组记录数据的完全随机设计方差分析表第64页,此课件共77页哦三、利用样本统计量进行方差分析三、利用样本统计量进行方差分析适用范围:分析资料没有原始数据,只有适用范围:分析资料没有原始数据,只有si2、ni,平均数等。平均数等。适用原始公式求解适用原始

29、公式求解第65页,此课件共77页哦第66页,此课件共77页哦第三节第三节 随机区组设计的方差分析随机区组设计的方差分析第67页,此课件共77页哦含义:所谓区组是指把从同一总体中随机抽取的被试按条件相同的含义:所谓区组是指把从同一总体中随机抽取的被试按条件相同的原则区分成各个组,使每个组内的被试尽量保持同质,让每个组原则区分成各个组,使每个组内的被试尽量保持同质,让每个组均接受所有的各种实验处理,每种实验处理在各个区组中重复的均接受所有的各种实验处理,每种实验处理在各个区组中重复的次数相等次数相等,这种设计也称为这种设计也称为被试内设计被试内设计。对这样获得的多个相。对这样获得的多个相关样本的平

30、均数进行的显著性检验,叫随机区组设计的方关样本的平均数进行的显著性检验,叫随机区组设计的方差分析。差分析。第68页,此课件共77页哦作用:能考虑个体的影响(即区组效应),可作用:能考虑个体的影响(即区组效应),可将其从组内效应中分离出来。因此,总平方和将其从组内效应中分离出来。因此,总平方和被分解为被分解为组间平方和组间平方和、区组平方和区组平方和、误差项平方误差项平方和和。欠缺:若不能保证同一区组内尽量同质,导致更大欠缺:若不能保证同一区组内尽量同质,导致更大误差出现。误差出现。第69页,此课件共77页哦每个区组内被试的分配方法:每个区组内被试的分配方法:一个被试作为一个区组,所有被试都要接

31、受各种实验处理;一个被试作为一个区组,所有被试都要接受各种实验处理;每一区组内被试的人数是实验处理数的整数倍;每一区组内被试的人数是实验处理数的整数倍;区组以一个团体为单位,每个单位都接受各种实验处理;区组以一个团体为单位,每个单位都接受各种实验处理;区组效应:区组间的平方和就表示区组效应,实际上,区组区组效应:区组间的平方和就表示区组效应,实际上,区组平方和与求组间平方和实质上是相同的,只是符号表示不同平方和与求组间平方和实质上是相同的,只是符号表示不同而已。而已。区组差异的显著性检验:一般来说没有必要进行,但若要考察区区组差异的显著性检验:一般来说没有必要进行,但若要考察区组设计是否必要,

32、则可进行。组设计是否必要,则可进行。F F=MSMSB B/MS/MSE E 。第70页,此课件共77页哦与随机区组设计方差分析的不同之处:与随机区组设计方差分析的不同之处:总方差的构成:总方差的构成:SST=SSB+SSW=SSB+SSR+SSE 组内方差的构成:组内方差的构成:SSW=SSR+SSE(SSE为残差)为残差)SSR区组平方和区组平方和 SSE=SST-SSB-SSR第71页,此课件共77页哦组内自由度组内自由度 dfR=n-1 dfE=dfT dfB-dfR=(N-1)-(K-1)-(n-1)=N-K-n+1第72页,此课件共77页哦第73页,此课件共77页哦第四节第四节 事

33、后检验事后检验第74页,此课件共77页哦如果方差分析的结果是多组平均数之间差异显著,这时需如果方差分析的结果是多组平均数之间差异显著,这时需要做进一步比较,确定在哪些实验处理组之间存在显著差要做进一步比较,确定在哪些实验处理组之间存在显著差异、而哪些实验处理组之间不存在显著差异,这就是事后异、而哪些实验处理组之间不存在显著差异,这就是事后检验(检验(post hoc test)。这个统计分析过程也被称为事后多重比)。这个统计分析过程也被称为事后多重比较(较(multiple comparison procedures)。)。第75页,此课件共77页哦第五节方差分析的spss实现第76页,此课件共77页哦2022/10/14感感谢谢大大家家观观看看第77页,此课件共77页哦

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 大学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁