《函数的幂级数展开式的应用精选PPT.ppt》由会员分享,可在线阅读,更多相关《函数的幂级数展开式的应用精选PPT.ppt(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、关于函数的幂级数展开式的应用关于函数的幂级数展开式的应用1第1页,讲稿共16张,创作于星期日一、求极限一、求极限 有些未定式的极限有些未定式的极限可以将极限过程中的主要、可以将极限过程中的主要、例例求求解解将将sinx展开为展开为x=0的幂级数的幂级数.这种方法的优点是这种方法的优点是:次要成份表示得非常清楚次要成份表示得非常清楚.可以用幂级数方法求出可以用幂级数方法求出.函数的幂级数展开式的应用函数的幂级数展开式的应用2第2页,讲稿共16张,创作于星期日 由此例可看出由此例可看出:这里这里,sinx与其等价无穷小与其等价无穷小x相差高阶无穷小相差高阶无穷小这个高阶无穷小不能与分子这个高阶无穷
2、小不能与分子 的的第一项第一项x 抵消抵消,它在极限中是起作用的它在极限中是起作用的.但如果将但如果将sinx用用x代换代换,则相当于将这个起作用的高阶无穷小也则相当于将这个起作用的高阶无穷小也略去了略去了,这显然是错误的这显然是错误的.函数的幂级数展开式的应用函数的幂级数展开式的应用在求极限时在求极限时,为什么加、减项为什么加、减项的无穷小不能用其等价无穷小代换的无穷小不能用其等价无穷小代换.3第3页,讲稿共16张,创作于星期日函数的幂级数展开式的应用函数的幂级数展开式的应用二、函数值的近似计算二、函数值的近似计算用函数的幂级数展开式用函数的幂级数展开式,常用方法常用方法1.若余项是交错级数
3、若余项是交错级数,则可用余和的首项来解决则可用余和的首项来解决;2.若不是交错级数若不是交错级数,则放大余和中的各项则放大余和中的各项,使之成为使之成为等比级数或其它易求和的级数等比级数或其它易求和的级数,从而求出其和从而求出其和.可以在展开式有效可以在展开式有效的区间内计算函数的近似值的区间内计算函数的近似值,而且可达到预先指而且可达到预先指定的精度要求定的精度要求.4第4页,讲稿共16张,创作于星期日例例解解函数的幂级数展开式的应用函数的幂级数展开式的应用余和余和:5第5页,讲稿共16张,创作于星期日函数的幂级数展开式的应用函数的幂级数展开式的应用用级数作近似计算时用级数作近似计算时,这样
4、估计误差这样估计误差,常将其余和放大常将其余和放大为几何级数为几何级数.因此计算量要小一些因此计算量要小一些.在一般情况下在一般情况下,泰勒公式比用拉格朗日估计误差的精度更好泰勒公式比用拉格朗日估计误差的精度更好,6第6页,讲稿共16张,创作于星期日例例解解其误差不超过其误差不超过 函数的幂级数展开式的应用函数的幂级数展开式的应用7第7页,讲稿共16张,创作于星期日函数的幂级数展开式的应用函数的幂级数展开式的应用三、积分的近似计算三、积分的近似计算有些初等函数的原函数不能用初等函数有些初等函数的原函数不能用初等函数故其定积分就不能用牛顿故其定积分就不能用牛顿-莱布尼茨莱布尼茨但如果这些函数在积
5、分区间上能但如果这些函数在积分区间上能表示表示,公式计算公式计算.能展开成幂级数能展开成幂级数,性质来计算这些定积分性质来计算这些定积分.则可利用幂级数逐项积分则可利用幂级数逐项积分8第8页,讲稿共16张,创作于星期日例例解解收敛的交错级数收敛的交错级数函数的幂级数展开式的应用函数的幂级数展开式的应用被积函数被积函数的原函数不能用初等函数表示的原函数不能用初等函数表示.由于由于x=0是是的可去间断点的可去间断点,故定义故定义这样这样被积函数在被积函数在0,1上上连续连续.展开展开得得9第9页,讲稿共16张,创作于星期日第四项第四项取前三项作为积分的近似值取前三项作为积分的近似值,得得例例函数的
6、幂级数展开式的应用函数的幂级数展开式的应用10第10页,讲稿共16张,创作于星期日复数项级数复数项级数函数的幂级数展开式的应用函数的幂级数展开式的应用四、欧拉四、欧拉(Euler)公式公式为实常数或实函数为实常数或实函数.若若则称级数则称级数收敛收敛,且其和为且其和为复数项级数绝对收敛的概念复数项级数绝对收敛的概念若若收敛收敛,则则绝对收敛绝对收敛,称复数项级数称复数项级数(1)绝对收敛绝对收敛.Euler(1707 1783)是瑞士数学家、物理学家是瑞士数学家、物理学家11第11页,讲稿共16张,创作于星期日函数的幂级数展开式的应用函数的幂级数展开式的应用三三个个基基本本展展开开式式12第1
7、2页,讲稿共16张,创作于星期日 揭示了三角函数和复变量指数函数之间的一种关揭示了三角函数和复变量指数函数之间的一种关系系.函数的幂级数展开式的应用函数的幂级数展开式的应用欧拉欧拉(Euler)公式公式13第13页,讲稿共16张,创作于星期日欧拉公式的证明欧拉公式的证明求极限求极限 (求未定式的极限求未定式的极限)函数的幂级数展开式的应用函数的幂级数展开式的应用五、小结五、小结积分的近似计算积分的近似计算函数值的近似计算函数值的近似计算14第14页,讲稿共16张,创作于星期日函数的幂级数展开式的应用函数的幂级数展开式的应用思考题思考题计算计算解解因为因为又又所以所以,15第15页,讲稿共16张,创作于星期日感谢大家观看第16页,讲稿共16张,创作于星期日