《小学数学教师的学科专业知识及其拓展.doc》由会员分享,可在线阅读,更多相关《小学数学教师的学科专业知识及其拓展.doc(33页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、小学数学教师的学科专业知识及其拓展一、关于给小学数学教师进行学科知识及其拓展的培训意见1、培训内容(1)帮助教师们系统地掌握小学数学知识体系及其结构,包括能够解答教科书(如人教版12册)所有的练习题和复习题。(2)帮助教师们正确理解小学数学知识中容易误解的数学概念与有关知识,使他们的小学数学知识得到横向拓展。(3)立足于教学的需要,帮助教师们开阔知识视野,使他们的小学数学知识得到一定的纵向延伸。例如一些数学史知识。如数学王子高斯巧算1+2+100的故事;哥德巴赫猜想;祖冲之与圆周率等等。特别是,市场经济要求人们掌握更多有用的数学,成本、利润、投入、产出、货款、效益、市场预测、风险评估等一系列经
2、济名词将成为人们社会生活中使用最为频繁的词汇,与这一系列经济活动相关的数学,如估算、比和比例、利息与利率、运筹与优化以及统计与概率等,理应成为数学课程中的组成部分,要求教师要有所掌握。2、培训方式(1)集中培训辅导:可根据实际情况,分段分块进行辅导,帮助教师们解决小学数学知识体系中的疑难问题。(2)校本培训学习:布置学习任务和作业任务,让教师们各自完成学习任务,自我提高。3、评价与考核建议小学数学教师的学科知识拓展培训的评价可分为:第一、学习态度和完成作业情况评价,占一定比例;第二、小学数学知识过关考试(卷面考试),占比例大些。考试内容:以小学数学新课程的内容标准所涉及的小学数学知识作为考试基
3、本内容。试题设计:(1)基本数学概念及计算题,(2)综合题(中等难度),(3)知识拓展题。二、关于小学数学教师的学科专业知识及其拓展的认识1、小学教师的知识结构:教育知识、学科知识、学科教学知识三大部分。教育知识包括教育学、心理学、学生思想工作(班主任)等方面的知识。它是教师在职前教育学习和平时工作实践学习积累而成的;学科知识是指本学科专业知识,包括了本学科知识体系及其思想方法,也是教师的学科专业功底涵养所在。它主要来源于教师的在接受教育期间学习和职前教学学习打下基础,以及平时教学实践学习的充实提高;学科教学知识体现了教师的专业独特性,是本专业教学实践性的知识。从数学专业的角度看,数学家不一定
4、具有这种知识;从教学经验来看,高中语文教师也不具有小学数学教学的这种知识。这是教师将特定的学科知识与学生思维、学习特点等教学法的知识融合起来而形成的教学实践性知识。2、小学数学教师的学科专业知识我们在林崇德(北京师范大学教授,博士生导师)和申继亮(申继亮教授现任北师大心理学院党委书记、教育部人文社科重点研究基地发展心理研究所所长,中国心理学会常务理事、中国心理学会教育心理专业委员会主任,博士生导师)关于教师知识结构划分的基础上,结合新课程改革的发展及数学学科的特点,把数学教师的知识结构分为“教什么”的本体性知识,“如何教”的条件性知识和在教育教学实践中大量积累起来的实践性知识三个主要方面:(1
5、)本体性知识,即学科专业知识。小学数学教师应具有的学科知识是特定的数学知识,主要包括教学所需要的数学理论知识、 数学应用性知识 、数学思想方法知识和数学史知识。(2)条件性知识,指个体在何种条件下,为什么传授数学知识以及如何更好地传授数学知识的一种知识类型,主要包括教育学和心理学的知识, 其中教育学知识包括教育理论知识、 教育技术知识 、数学课程知识 、数学教学知识;心理学知识包括教师心理知识和学生心理知识,教师心理知识又分为教学监控知识教学效能感 、教学风格知识 、教师品德知识;学生心理知识又分为数学认知的知识、数学学习的元认知知识、数学学习的非认知知识 、学习风格知识。(3)实践性知识,指
6、关于数学课堂情景及与之相关的知识,主要包括数学课堂教学管理知识和教材处理知识。教师要在自己的教学工作中不断增长自己的学科知识,也包括对已有知识的不断改进或必要重组。从另一角度说,数学学科知识主要包括:知识的内涵及多重表示、知识的发生和发展过程、知识之间的联系、知识所蕴含的数学思想和思维方式。小学数学教师要具有丰厚的数学知识、扎实的数学技能和成熟的数学思想。三、小学数学教师的学科专业知识及其拓展(一)小学数学知识体系中“数与代数”的知识及其拓展1、小学数学中的“数的认识及其运算”数的认识数的运算数学思考一上20以内数的认识20以内加减法、进位加法求和应用题求差应用题图示加减两步应用题一下100以
7、内数的认识20以内的退位减法100以内的加法与减法图文应用题表格应用题(在练习中)加减、比多少应用题二上100以内的加法和减法表内乘法几个几的乘法应用题求一个数的几倍的二下万以内数的认识表内除法整百、整千数加减法万以内数的加法和减法(一)解决问题三上分数的初步认识万以内数的加法和减法(二)有余数的除法多位数乘一位数分数的简单计算有余数除法的应用题巩固两步应用题三下小数的初步认识除数是一位数的除法两位数乘两位数简单的小数加减法巩固除法应用题连乘应用题解决问题四上大数的认识三位数乘两位数除数是两位数的除法速度问题四下小数的意义和性质四则运算运算定律小数的加法和减法相应的两三步应用题五上循环小数小数
8、乘法小数除法解决问题每一种方程对应一种应用题五下因数和倍数分数的意义和性质分数的加法和减法分数两三步应用题六上倒数的认识百分数分数乘法分数除法解决问题按比例分配用百分数解决问题六下负数用比例解决问题关于数的认识的知识要点:(1)整数十进制计数法:一(个)、十、百、千、万都叫做计数单位。其中“一”是计数的基本单位。10个1是10,10个10是100每相邻两个计数单位之间的进率都是十。这种计数方法叫做十进制计数法整数的读法:从高位一级一级读,读出级名(亿、万),每级末尾0都不读。其他数位一个或连续几个0都只读一个“零”。整数的写法:从高位一级一级写,哪一位一个单位也没有就写0。四舍五入法:求近似数
9、,看要求近似到哪一位数,再看其后一位的数是几,比5小就舍去,是5或大于5舍去尾数向前一位进1。这种求近似数的方法就叫做四舍五入法。整数大小的比较:位数多的数较大,数位相同最高位上数大的就大,最高位相同比看第二位较大就大,以此类推。 (2)小数小数表示:把整数1平均分成10份、100份、1000份这样的一份或几份是十分之几、百分之几、千分之几这些分数可以用小数表示。如1/10记作0.1,6/100记作0.06。小数计数:小数点右边第一位叫十分位,计数单位是十分之一(0.1);第二位叫百分位,计数单位是百分之一(0.01)小数部分最大的计数单位是十分之一,没有最小的计数单位。小数部分有几个数位,就
10、叫做几位小数。如0.56是两位小数,4.067是三位小数。数位顺序表:整数部分小数点小数部分亿级万级个级数位千亿位百亿位十亿位亿位千万位百万位十万位万位千位百位十位个位十分位百分位千分位计数单位千亿百亿十亿亿千万百万十万万千百十一(个)十分之一百分之一千分之一小数的读法:整数部分整数读,小数点读点,小数部分顺序读。小数的写法:小数点写在个位右下角。小数的性质:小数末尾添0去0大小不变。化简小数点位置移动引起大小变化:右移扩大左缩小,1十2百3千倍。小数大小比较:整数部分大就大;整数相同看十分位大就大;以此类推。(3)分数和百分数分数和百分数的意义分数的意义:把单位“1”平均分成若干份,表示这样
11、的一份或者几份的数,叫做分数。在分数里,表示把单位“1”平均分成多少份的数,叫做分数的分母;表示取了多少份的数,叫做分数的分子;其中的一份,叫做分数单位。百分数的意义:表示一个数是另一个数的百分之几的数,叫做百分数。也叫百分率或百分比。百分数通常不写成分数的形式,而用特定的“%”来表示。百分数一般只表示两个数量关系之间的倍数关系,后面不能带单位名称。百分数表示两个数量之间的倍比关系,它的后面不能写计量单位。成数:几成就是十分之几。分数的种类按照分子、分母和整数部分的不同情况,可以分成:真分数、假分数、带分数分数和除法的关系及分数的基本性质除法是一种运算,有运算符号;分数是一种数。因此,一般应叙
12、述为被除数相当于分子,而不能说成被除数就是分子。由于分数和除法有密切的关系,根据除法中“商不变”的性质可得出分数的基本性质。分数的分子和分母都乘以或者除以相同的数(0除外),分数的大小不变,这叫做分数的基本性质,它是约分和通分的依据。约分和通分分子、分母是互质数的分数,叫做最简分数。把一个分数化成同它相等但分子、分母都比较小的分数,叫做约分。约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。通分的方法:先求出原来几个分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。倒数乘积是1的两个数互
13、为倒数。求一个数(0除外)的倒数,只要把这个数的分子、分母调换位置。1的倒数是1,0没有倒数。分数的大小比较分母相同的分数,分子大的那个分数就大。分子相同的分数,分母小的那个分数就大。分母和分子都不同的分数,通常是先通分,转化成通分母的分数,再比较大小。如果被比较的分数是带分数,先要比较它们的整数部分,整数部分大的那个带分数就大;如果整数部分相同,再比较它们的分数部分,分数部分大的那个带分数就大。百分数与折数、成数的互化:例如:三折就是30,七五折就是75,成数就是十分之几,如一成就是10%,则六成五就是65%。纳税和利息:税率:应纳税额与各种收入的比率。利率:利息与本金的百分率。由银行规定按
14、年或按月计算。利息的计算公式:利息=本金利率时间百分数与分数的区别主要有以下三点:意义不同。百分数是“表示一个数是另一个数的百分之几的数。”它只能表示两数之间的倍数关系,不能表示某一具体数量。如:可以说1米是5米的 20,不可以说“一段绳子长为20米。”因此,百分数后面不能带单位名称。分数是“把单位1平均分成若干份,表示这样一份或几份的数”。分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量。应用范围不同。百分数在生产、工作和生活中,常用于调查、统计、分析与比较。而分数常常是在测量、计算中,得不到整数结果时使用。书写形式不同。百分数通常不写成分数形
15、式,而采用百分号“”来表示。如:百分之四十五,写作:45;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。(4)数的整除整除的意义整数a除以整数b(b0),除得的商正好是整数而没有余数,我们就说a能被b整除(也可以说b能整除a)除尽的意义 甲数除以乙数,所得的商是整数或有限小数而余数也为0时,我们就说甲数能被乙数除尽,(或者说乙数能除尽甲数)这里的甲数、乙数可以是自然数,也可以是小
16、数(乙数不能为0)。约数和倍数如果数a能被数b整除,a就叫b的倍数,b就叫a的约数。一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。一个数的倍数的个数是无限的,其中最小的是它本身,它没有最大的倍数。奇数和偶数能被2整除的数叫偶数。例如:0、2、4、6、8、10注:0也是偶数 2、不能被2整除的数叫奇数。例如:1、3、5、7、9整除的特征能被2整除的数的特征:个位上是0、2、4、6、8。能被5整除的数的特征:个位上是0或5。能被3整除的数的特征:一个数的各个数位上的数之和能被3整除,这个数就能被3 整除。质数和合数在正整数集合里分为质数、合数和1。一个数只有1和它本身两个约数
17、,这个数叫做质数(素数)。质数有无穷多个。一个数除了1和它本身外,还有别的约数,这个数叫做合数。合数有无穷多个。1既不是质数,也不是合数。自然数按约数的个数可分为:质数、合数自然数按能否被2整除分为:奇数、偶数分解质因数每个合数都可以写成几个质数相乘的形式,这几个质数叫做这个合数的质因数。例如:18=332,3和2叫做18的质因数。把一个合数用几个质因数相乘的形式表示出来,叫做分解质因数。通常用短除法来分解质因数。几个数公有的因数叫做这几个数的公因数。其中最大的一个叫这几个数的最大公因数。公因数只有1的两个数,叫做互质数。几个数公有的倍数叫做这几个数的公倍数。其中最大的一个叫这几个数的最大公倍
18、数。特殊情况下几个数的最大公约数和最小公倍数。(1)如果几个数中,较大数是较小数的倍数,较小数是较大数的约数,则较大数是它们的最小公倍数,较小数是它们的最大公约数。(2)如果几个数两两互质,则它们的最大公约数是1,小公倍数是这几个数连乘的积。奇数和偶数的运算性质相邻两个自然数之和是奇数,之积是偶数。奇数+奇数=偶数,奇数+偶数=奇数,偶数+偶数=偶数;奇数-奇数=偶数,奇数-偶数=奇数,偶数-奇数=奇数,偶数-偶数=偶数;奇数奇数=奇数,奇数偶数=偶数,偶数偶数=偶数。关于数的四则运算的知识要点:(1)四则运算的法则 加法:整数和小数:相同数位对齐,从低位加起,满十进一。同分母分数:分母不变,
19、分子相加;异分母分数:先通分,再相加减法:整数和小数:相同数位对齐,从低位减起,哪一位不够减,退一当十再减。同分母分数:分母不变,分子相减;异分母分数:先通分,再相减乘法:整数和小数:用乘数每一位上的数去乘被乘数,用哪一位上的数去乘,得数的末位就和哪一位对起,最后把积相加,因数是小数的,积的小数位数与两位因数的小数位数相同。分数:分子相乘的积作分子,分母相乘的积作分母。能约分的先约分,结果要化简除法:整数和小数:除数有几位,先看被除数的前几位,(不够就多看一位),除到被除数的哪一位,商就写到哪一位上。除数是小数是,先化成整数再除,商中的小数点与被除数的小数点对齐b、甲数除以乙数(0除外),等于
20、甲数除以乙数的倒数 (2)运算定律加法交换律 ab=ba 结合律 (ab)c=a(bc) 减法性质 abc=a(bc) a(bc)=abc乘法交换律 ab=ba 结合律 (ab)c=a(bc) 分配律 (ab)c=acbc 除法性质 a(bc)=abc a(bc)=abc (ab)c=acbc (ab)c=acbc 商不变性质m0 ab=(am)(bm) =(am)(bm) 积的变化规律:在乘法中,一个因数不变,另一个因数扩大(或缩小)若干倍,积也扩大(或缩小)相同的倍数。推广:一个因数扩大A倍,另一个因数扩大B倍,积扩大AB倍。一个因数缩小A倍,另一个因数缩小B倍,积缩小AB倍。商不变规律:
21、在除法中,被除数和除数同时扩大(或缩小)相同的倍数,商不变。推广:被除数扩大(或缩小)A倍,除数不变,商也扩大(或缩小)A倍。被除数不变,除数扩大(或缩小)A倍,商反而缩小(或扩大)A倍。利用积的变化规律和商不变规律性质可以使一些计算简便。但在有余数的除法中要注意余数。如:8500200= 可以把被除数、除数同时缩小100倍来除,即852=42(余1),商不变,但此时的余数1是被缩小100被后的,所以还原成原来的余数应该是100,即8500200=42100。关于简易方程的知识要点:(1)用字母表示数 用字母表示数是代数的基本特点。既简单明了,又能表达数量关系的一般规律。用字母表示数的注意事项
22、 :数字与字母、字母和字母相乘时,乘号可以简写成“或省略不写。数与数相乘,乘号不能省略。 当1和任何字母相乘时,“1”省略不写。数字和字母相乘时,将数字写在字母前面。(2)含有字母的式子及求值 求含有字母的式子的值或利用公式求值,应注意书写格式 (3)等式与方程 表示相等关系的式子叫等式。含有未知数的等式叫方程。判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。所以,方程一定是等式,但等式不一定是方程。(4)方程的解和解方程 使方程左右两边相等的未知数的值,叫方程的解。求方程的解的过程叫解方程。在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演
23、将所求的未知数设为x。(5)解方程的方法直接运用四则运算中各部分之间的关系去解。如x-8=12加数+加数=和 一个加数 = 和 另一个加数 被减数减数=差 减数=被减数差 被减数=差减数 被乘数乘数=积 一个因数=积另一个因数 被除数除数=商 除数=被除数商 被除数=除数商 先把含有未知数x的项看作一个数,然后再解。如3x+20=41先把3x看作一个数,然后再解。按四则运算顺序先计算,使方程变形,然后再解。如2.54-x=4.2,要先求出2.54的积,使方程变形为10-x=4.2,然后再解。利用运算定律或性质,使方程变形,然后再解。如:.x.x先利用运算定律或性质使方程变形为(.)x,然后计算
24、括号里面使方程变形为x,最后再解。2、小学数学中数的结构;零自然数正整数负整数整数 正分数有理数分数负分数无理数:无限不循环小数。如, 等实数有限小数和无限循环小数都能化为分数。在自然数的基础上负数概念引进后,“整数集”完整地形成了,并使“加法、减法、乘法”在整数集内永远实施。在自然数的基础上分数概念的引进,首先形成了“非负理数集”,使除法(0不作除数)在这个数集内永远实施;再引进负数后,有理数集就完整地形成,使“加、减、乘、除”四则运算在有理数集内永远实施。也可理解为:加法和乘法的实施使“非0自然数集”扩充为“自然数集”;再实施减法,使“自然数集”扩充为“整数集”,也即“负整数”加入;又再实
25、施除法(0不作除数),使“整数集”扩充为“有理数集”,也即“分数”的加入。3、小学数学中对于数及其运算的几点深入理解 (1)对“自然数”的理解0为什么规定为自然数上世纪90年代以前人们习惯的自然数不包括0,1993年中华人民共和国国家标准颁布,规定了0属于自然数。因为,自然数有三大功能,一是基数,二是序数,三是能加法和乘法运算。缺少了0就不完善了。在基数上,0表示没有,是“空集”这个有限集合的元素个数;在顺序上,有时当着起点,如尺子的0厘米;在加乘运算上,如果没有0的自然数,不能运算。在小学数学中所指的整数就是自然数。(2)对于分数的理解 小学数学中分数的定义是:把单位“1”平均分成若干份,表
26、示这样一份或几份的数叫做分数。因此,分数的分子、分母都是非0自然数,并且分母不能是1。在小学数学中,像0/3,2/1,0.1/3,4/0.2等的数都不是分数。但是,有时在计算中会出现分子是0的分数,就叫零分数,或分母是1的分数是整数。所以,分数补充定义:当分数m/n的 n=1时,m/n=m/1=m;当分数m/n的m=0时,m/n=0/n=0。另一方面,在过去的小学数学里,有繁分数这个概念,可把0.1/3或4/0.2等看成是繁分数。繁分数可化成整数或分数。(3)分数和小数的关系 任何一个分数都可化为小数,即是化成有限小数或无限循环小数。但是,并非任何小数都能化成分子、分母都是整数的分数,如无限不
27、循环小数不能化成分数。(4)关于0为什么不能做除数 整数除法定义:如果bq=a,那么ab=q 。这说明除法是乘法的逆运算,已知积和一个因数,求另一个因数。当a=0,b0时,b 0=0,0b=0。如果除数b=0,那么:当被除数a不为零时,由于任何数乘0都不可能等于a,所以a0的商是不存在的;当被除数a为零时,因为任何数乘0都等于0,所以ab的商是不能确定的。因此,规定除法中,除数不能为零。(5)对小学数学整除性的理解 因数和倍数。小学数学是在非0整数(自然数)范围内研究因数和倍数的。在小学数学中的非0自然里,ab=c,a和b都是c的因数,c是a和b的倍数;从数的整理除性来看,0能被任何非0自然数
28、整除,故0是任何非0自然数整除的倍数,任何非0自然数也都是0的因数,所以在研究因数和倍数时,把0包括在内就没有什么实际意义,因此,小学数学中的0不作为因数、倍数的研究范围。(学习负数后,一个数的倍数可以是负整数)因0不能当除数,任何整数都不是0的倍数,故0没有倍数。奇数和偶数。小学数学是在自然数中定义奇数和偶数的,所以0是偶数。奇数性质:两个奇数的和或差是偶数;两个奇数的积是奇数;一奇一偶的和或差是奇数;一奇一偶的积是偶数。偶数性质:两偶的和、差、积是偶数。在自然数中,最小的偶数的0,最小的奇数的1。数扩充到全体整数时,就没有最小的整数,也没有最小的奇数(偶数)。人教版五下P22练习题11奇数
29、与偶数的和是奇数还是偶数?奇数与奇数的和是奇数还是偶数?偶数与偶数的和呢?(设奇数为2n-1,nN,设偶数为2n-1,nN,可以证明)质数和合数一个数除了1和它本身外,还有其他的因数,这样的数叫合数,合数至少有3个因数。一个数除了1和它本身外,不再有别的因数,这样的数叫质数,质数都有2个因数。0虽然能被1整除,但不能被它本身整除(00无意义),故O不是质数也不是合数。1不是质数也不是合数。(6)为什么要引进负数?一是人们在生产生活中经常会遇到各种相反意义的量,二是使减法运算永远可以实施。负数的引进,是中国古代数学家对数学的一个巨大贡献。在九章算术中,除了引进正负数的概念外,还完整地记载了正负数
30、的运算法则,实际上是正负数加减法的运算法则。如负数出现在方程的系数和常数项中,把“卖(收入钱)”作为正,则“买(付出钱)”作为负,把“余钱”作为正,则“不足钱”作为负。刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异”意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。在国外,负数出现得很晚,直至公元1150年(比九章算术成书晚l千多年),印度人巴土卡洛首先提到了负数,而且在公元17世纪以前,许多数学家一直采取不承认的态度。如法国大数学家韦达,尽管在代数方面作出了巨大贡献,但他在解方程时却极力回避负
31、数,并把负根统统舍去。有许多数学家由于把零看作“没有”,他们不能理解比“没有”还要“少”的现象,因而认为负数是“荒谬的”。直到17世纪,笛卡儿创立了坐标系,负数获得了几何解释和实际意义,才逐渐得到了公认。从上面可以看出,负数的引进,是我国古代数学家贡献给世界数学的一份宝贵财富。(7)对近似数和近似值的理解与实际数相接近的数称为近似数。如海南省人口860万,是个近似数。近似等于精确值的数值称为近似值。如除法运算时,求到某一位数上四舍五入所得的数值,是商的近似值。近似数和近似值不是一回事的。(8)关于估算(从二上P31开始有“加减法估算”)。小学数学的估算有三类;一是对大数目的估算,如254196
32、大约是多少?;二是对日常口算、笔算的验算;三是对日常生活中一些最简单的推算,如100万张纸有多厚?对大数目的估算:通常用四舍五入方法保留最高位或次高位,用“凑整”的方法口算出近似数。如上式254196可看成大约250200=50000。具有现实生活背景的估算问题:依据实际情况而定,有时估大些或估小些。如某人要去商店买热水瓶29元,水壶44元,水杯24元,他需要大约带多少钱?4、对小学数学中的解决问题理解(解决问题与传统的应用题的区别)(1)重视过程的教学。应用题更多的强调尽快获得答案,而解决问题强调一个过程,就是寻求解决问题方式方法的过程。重视解决问题的过程,寻求解决问题的方法和策略比获得一个
33、结论本身来得更重要。(2)不仅仅依附一个知识点。应用题往往是结合某一个具体的知识点,例如今天讲加法,就是加法应用题,明天学乘法是乘法应用题,应用题常常是依附在某一个知识点的背景下;而解决问题是强调针对一个具体的真实的情境,它更多地强调综合解决问题的过程。例如今天讲完加法后,解决问题的情境可能不局限于用加法,也不局限于用减法,它要调动学生已有的知识来解决问题。它是不仅仅依附于某一个知识点的。(3)具体问题具体分析。应用题教学把应用题归成类,集中一类问题进行思考,强调速度和技巧;而解决问题强调的是具体问题具体分析,换句话说就是在一种新的情境中如何运用所学知识解决问题,使问题更具挑战性,可能是一个问
34、题接着一个问题。学生面临的具体情境不同,问题就不同,学生要具体问题具体分析。要寻求解决这个问题的方法,它更具有挑战性,更具有新意。(4)问题的开放性和多元性。应用问题强调广泛性,即从生活中、从儿童已有的经验出发、从现在的科技和社会发展的过程中发现问题和提炼问题。问题本身的开放性和多元性也是其很重要一个特征。5、常见的量上学期下学期一年级钟表的认识(时针、分针)认识人民币; 认识时间二年级长度单位克和千克三年级毫米、分米、千米的认识; 吨的认识; 时、分、秒年、月、日; 24时计时法(1)关于量与计量及的计算事物的多少、长短、大小、轻重、快慢等,这些可以测定的客观事物的特征叫做量。把一个要测定的
35、量同一个作为标准的量相比较叫做计量。用来作为计量标准的量叫做计量单位。数+单位名称=名数 只带有一个单位名称的叫做单名数。带有两个或两个以上单位名称的叫做复名数高级单位的数如把米改成厘米 低级单位的数如把厘米改成米只带有一个单位名称的数叫做单名数。如:5小时, 3千克(只有一个单位的) 带有两个或两个以上单位名称的叫做复名数。如:5小时6分,3千克500克(有两个单位的)56平方分米=(0.56)平方米 就是单名数转化成单名数 560平方分米=(5)平方米(60平方分米) 就是单名数转化成复名数的例子.高级单位与低级单位是相对的.比如,米相对于分米,就是高级单位,相对于千米就是低级单位. 1年
36、12个月(31天的月份有1、3、5、7、8、10、12月份,30天的月份有4、6、9、11月份,平年2月28天,闰年2月29天 闰年年份是4的倍数,整百年份须是400的倍数。平年一年365天,闰年一年366天。公元1年100年是第一世纪,公元19012000是第二十世纪。(2)对北京时间的理解格林尼治时间也称为“世界时”。 格林尼治是英国伦敦南郊原格林尼治天文台的所在地,它又是世界上地理经度的起始点。对于世界上发生的重大事件,都以格林尼治的地方时间记录下来。一旦知道了格林尼治时间,人们就很容易推算出相当的本地时间。例如,某事件发生在格林尼治时间上午8 时,我国在英国东面,北京时间比格林尼治时同
37、要早8小时,我们就立刻知道这次事情发生在相当于北京时间16时,也就是北京时间下午4时。国际上把地球表面按经线分为24时区,规定每一时区内使用它的中央子午线的地方时为该区的“标准时间”。 各国的标准时间一般以首都所处的时区来确定。我国采用首都北京所在的东八时区的区时作为标准时间,称为北京时间。就是东8区的中央子午线东经120的地方时,相当于山海关以东的地方时,并非北京市的地方时。北京城中心大约在东经11625,其地方时比北京时间晚14分17秒左右。我国有些城市处在东经120位置,如山东胶县、江苏常州、福建霞浦,它们的地方时和北京时间一致。北京时间=世界时+8小时。(3)质量和重量的区别质量是物体
38、所含物质的多少。是物体的一种属性,质量不随物体的形状、温度、状态而改变,质量也不随物体的位置而改变。质量没有方向。重量是物体受到地心引力作用,而具有向下的力,这个力的大小叫做这个物体的重量。重量在各地区因地心引力的不同而有微小的差别,在地球两极比在赤道大些,高处比低处小些。一个物体的重力与质量有如下关系:重力=质量g(g是重力加速度),在不同地点g略有变化,所以同一个物体,在不同的地点的重力略有差异。质量的单位有吨(t)、千克(kg)克(g)、毫克等,重力与质量有如下关系:重力=质量g。测量质量的工具有天平,磅秤等。(4)名数与不名数在书的后面富有数量单位名称的数叫做名数。例如:3米,8元,1
39、0张,100千克等.;4角5分、15分30秒等叫做复名数。在数的后面没有数量单位名称的数,叫做不名数。例如:45,3/4,32 等;在8加5乘以6的积是多少,这里的三个数都是不名数。6、比和比例知识内容分布:小学数学六上学期学习:比;六下学习:比例,正、反比例、比例尺, 图形的放大与缩小。(1)关于比和比例的知识要点表示两个比相等的式子叫做比例。在比例里,两个外项的积等于两个内项的积,这叫做比例的基本性质。应用比例的基本性质可以解比例、组比例,还可以求两个数的比。图上距离和实际距离的比,叫做比例尺。两种相关联的量。若比值一定,则成正比例;若积一定,则成反比例。若比值和积都不一定,则不成比例。应
40、用比例知识解答应用题,要先判断两种相关联的量成什么比例,找出这两种相关联的量的对应数值,再根据正、反比例的意义列方程解答。(2)比和比例应用题 在工业生产和日常生活中,常常要把一个数量按照一定的比例来进行分配,这种分配方法通常叫“按比例分配”。 (3)比例的解题策略按比例分配的有关习题,在解答时,要善于找准分配的总量和分配的比,然后把分配的比转化成分数或份数来进行解答 (4)正、反比例应用题的解题策略第一、审题,找出题中相关联的两个量 ;第二、分析,判断题中相关联的两个量是成正比例关系还是成反比例关系;第三、设未知数,列比例式;第四、解比例式;第五、检验,写答语。(5)分数、除法和比三者之间的
41、联系和区别联系:在分数中,分子相当于除法算式中的被除数,分母相当于除数, 分数线相当于除号,分数值相当于商;把分数放在“比”中,分子相当 于前项,分母相于后项,分数线相当于比号,分数值相当于比值;比 的前项相当于除法中的被除数,比的后项相当于除法中的除数,比号相当于除法中的除号,比值相当于除法中的商。 区别:分数是一种数;除法是数与数之间运算;比是一种关系。(6)对相关联的量一定成正比例或反比例的理解有些量是相关联的量,一种量变化,另一种量也随着变化,但它们却不成正比例也不成反比例。例如,圆的面积随着半径的变化而变化,变化的方向相同,好象是正比例关系,而它们实际上是不成正比例的。又如,一要绳子
42、长度一定,剪去的长度与剩下的长度也不成反比例关系。正比例:x:y=k(常数),即y= k x。 反比例:xy=k(常数),即y= k /x。7、探索规律第一学段(13年级)发现给定的事物中隐含的简单规律(一年级下册、二年级下册找规律单元)第二学段(46年级)探求给定事物中隐含的规律或变化趋势小学数学探索规律有四种情况:算式中的规律 算式规律:如一个数乘11,101的计算。数列中的规律 12311=1353,58734101=5932134探索规律 数列规律:考虑相邻两项的关系,或一组数,的关系,找到规律。“式”的规律 式的规律:几个算式排列在一起,从中发现规律。数形结合的规律 数形结合的规律从
43、图形对称或排列找规律(1)电话联系人的问题(五下打电话)每增加一分钟新接到通知的队员数正好是前面所有接到通知的队员和老师的总数,也就是第n分钟新接到通知的队员数等于前(n-1)分钟内接到通知的队员和老师的总数。因而到第n分钟所有接到通知的队员和老师的总数就是一个等比数列,通项公式为an=2n,到第n分钟所有接到通知的队员总数就是(2n-1)人。随着时间的增加,所有接到通知的队员数分别为1,3,7,15,31因此要通知完15个队员,只需要4分钟。根据这个规律算一算5分钟最多可以通知多少人,以及如果一个合唱团有50人,最少花多少时间就能通知到每个人。这些问题利用发现的规律都能轻松地解决。(2)因数
44、是11,101的规律12311=1353 58734101=5932134(双交叉)(二)小学数学知识体系中“空间与图形”知识的拓展1、内容介绍(1)几何形体内容分布与说明年级内容分布详 细 内 容说 明一上认识物体和图形(立体图形、平面图形名称认识)1.长方体、正方体2.圆柱、球3.长方形、正方形4.三角形、圆1.先立体后平面的认识顺序,直观的认识方法2.涂色、数个数、分类等二上认识线段角的初步认识1.角的顶点和边2.直角,和画法1.在认识长度单位的时候认识线段并与曲线区别2.名称,和画法二下锐角和钝角锐角比直角小,钝角比直角大。三上四边形四边形平行四边形周长的概念长方形和正方形的周长估计1.画、剪等活动2.封闭图形一周的长度,是它的周长3.教材没有呈现“长”“宽”的概念。没有呈现计算公式,只有算式。4.估计长度三下面积面积的概念长方形和正方形的面积计算1.物体表面或封闭图形的大小,就是它们的面积2.有归纳公式,、出现先求面积再求别的的两步计算应用题四上角的度量直线、射线、和角角的度量角的分类画角1一束的光线近似看成