《2015考研数学一真题及答案解析.doc》由会员分享,可在线阅读,更多相关《2015考研数学一真题及答案解析.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 要考研,找金程 WWW.51DX.ORG2015年全国硕士研究生入学统一考试数学(一)试题解析一、选择题:18小题,每小题4分,共32分.下列每题给出的四个选项中,只有一个选项符合题目要求的,请将所选项前的字母填在答题纸指定位置上.(1)设函数在内连续,其中二阶导数的图形如图所示,则曲线的拐点的个数为 ( )(A) (B) (C) (D) 【答案】(C)【解析】拐点出现在二阶导数等于0,或二阶导数不存在的点,并且在这点的左右两侧二阶导函数异号.因此,由的图形可得,曲线存在两个拐点.故选(C).(2)设是二阶常系数非齐次线性微分方程的一个特解,则( )(A) (B) (C) (D) 【答案】(
2、A)【分析】此题考查二阶常系数非齐次线性微分方程的反问题已知解来确定微分方程的系数,此类题有两种解法,一种是将特解代入原方程,然后比较等式两边的系数可得待估系数值,另一种是根据二阶线性微分方程解的性质和结构来求解,也就是下面演示的解法.【解析】由题意可知,、为二阶常系数齐次微分方程的解,所以2,1为特征方程的根,从而,从而原方程变为,再将特解代入得.故选(A)(3) 若级数条件收敛,则 与依次为幂级数的 ( )(A) 收敛点,收敛点 (B) 收敛点,发散点 (C) 发散点,收敛点(D) 发散点,发散点【答案】(B)【分析】此题考查幂级数收敛半径、收敛区间,幂级数的性质.【解析】因为条件收敛,即
3、为幂级数的条件收敛点,所以的收敛半径为1,收敛区间为.而幂级数逐项求导不改变收敛区间,故的收敛区间还是.因而与依次为幂级数的收敛点,发散点.故选(B). (4) 设是第一象限由曲线,与直线,围成的平面区域,函数在上连续,则 ( )(A) (B) (C) (D) 【答案】(B)【分析】此题考查将二重积分化成极坐标系下的累次积分【解析】先画出D的图形,所以,故选(B)(5) 设矩阵,若集合,则线性方程组有无穷多解的充分必要条件为 ( )(A) (B) (C) (D) 【答案】(D)【解析】,由,故或,同时或.故选(D) (6)设二次型 在正交变换为 下的标准形为 ,其中 ,若 ,则在正交变换下的标
4、准形为( )(A) (B) (C) (D) 【答案】(A)【解析】由,故.且.由已知可得:故有所以.选(A)(7) 若A,B为任意两个随机事件,则 ( )(A) (B) (C) (D) 【答案】(C)【解析】由于,按概率的基本性质,我们有且,从而,选(C) .(8)设随机变量不相关,且,则 ( )(A) (B) (C) (D) 【答案】(D)【解析】 ,选(D) .二、填空题:914小题,每小题4分,共24分.请将答案写在答题纸指定位置上.(9) 【答案】【分析】此题考查型未定式极限,可直接用洛必达法则,也可以用等价无穷小替换.【解析】方法一:方法二: (10) 【答案】【分析】此题考查定积分
5、的计算,需要用奇偶函数在对称区间上的性质化简. 【解析】 (11)若函数由方程确定,则【答案】【分析】此题考查隐函数求导.【解析】令,则又当时,即.所以,因而(12)设是由平面与三个坐标平面平面所围成的空间区域,则【答案】【分析】此题考查三重积分的计算,可直接计算,也可以利用轮换对称性化简后再计算.【解析】由轮换对称性,得,其中为平面截空间区域所得的截面,其面积为.所以 (13) 阶行列式【答案】【解析】按第一行展开得(14)设二维随机变量服从正态分布,则【答案】 【解析】由题设知,而且相互独立,从而 .三、解答题:1523小题,共94分.请将解答写在答题纸指定位置上.解答应写出文字说明、证明
6、过程或演算步骤.(15)(本题满分10分) 设函数,若与在是等价无穷小,求的值.【答案】【解析】法一:原式即法二:因为分子的极限为0,则,分子的极限为0,(16)(本题满分10分) 设函数在定义域I上的导数大于零,若对任意的,由线在点处的切线与直线及轴所围成区域的面积恒为4,且,求的表达式.【答案】.【解析】设在点处的切线方程为:令,得到,故由题意,即,可以转化为一阶微分方程,即,可分离变量得到通解为:,已知,得到,因此;即.(17)(本题满分10分)已知函数,曲线C:,求在曲线C上的最大方向导数.【答案】3【解析】因为沿着梯度的方向的方向导数最大,且最大值为梯度的模.,故,模为,此题目转化为
7、对函数在约束条件下的最大值.即为条件极值问题.为了计算简单,可以转化为对在约束条件下的最大值.构造函数:,得到.所以最大值为.(18)(本题满分 10 分)(I)设函数可导,利用导数定义证明(II)设函数可导,写出的求导公式.【解析】(I) (II)由题意得 (19)(本题满分 10 分) 已知曲线L的方程为起点为,终点为,计算曲线积分.【答案】【解析】由题意假设参数方程, (20) (本题满11分) 设向量组内的一个基,.(I)证明向量组为的一个基;(II)当k为何值时,存在非0向量在基与基下的坐标相同,并求所有的.【答案】【解析】(I)证明: 故为的一个基.(II)由题意知,即即即,得k=
8、0 (21) (本题满分11 分) 设矩阵相似于矩阵.(I) 求的值;(II)求可逆矩阵,使为对角矩阵.【解析】(I) (II)的特征值时的基础解系为时的基础解系为A的特征值令,(22) (本题满分11 分) 设随机变量的概率密度为对 进行独立重复的观测,直到2个大于3的观测值出现的停止.记为观测次数.(I)求的概率分布;(II)求 【解析】(I) 记为观测值大于3的概率,则,从而, 为的概率分布; (II) 法一:分解法:将随机变量分解成两个过程,其中表示从到次试验观测值大于首次发生,表示从次到第试验观测值大于首次发生.则,(注:Ge表示几何分布)所以.法二:直接计算记,则,所以,从而.(23) (本题满分 11 分)设总体X的概率密度为:其中为未知参数,为来自该总体的简单随机样本.(I)求的矩估计量.(II)求的最大似然估计量.【解析】(I) ,令,即,解得为的矩估计量;(II) 似然函数,当时,则.从而,关于单调增加,所以为的最大似然估计量.文档内容由经济学金融硕士考研金程考研网 整理发布。经济学金融考研论坛