玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(解析版)(免费下载).doc

上传人:秦** 文档编号:4845785 上传时间:2021-11-16 格式:DOC 页数:81 大小:4.61MB
返回 下载 相关 举报
玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(解析版)(免费下载).doc_第1页
第1页 / 共81页
玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(解析版)(免费下载).doc_第2页
第2页 / 共81页
点击查看更多>>
资源描述

《玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(解析版)(免费下载).doc》由会员分享,可在线阅读,更多相关《玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(解析版)(免费下载).doc(81页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、玩转压轴题,争取满分之备战2020年中考数学解答题高端精品专题四 几何最值的存在性问题【考题研究】在平面几何的动态问题中,当某几何元素在给定条件变动时,求某几何量(如线段的长度、图形的周长或面积、角的度数以及它们的和与差)的最大值或最小值问题,称为最值问题。从历年的中考数学压轴题型分析来看,经常会考查到距离或者两条线段和差最值得问题,并且这部分题目在中考中失分率很高,应该引起我们的重视。几何最值问题再教材中虽然没有进行专题讲解,到却给了我们很多解题模型,因此在专题复习时进行压轴训练是必要的。【解题攻略】最值问题是一类综合性较强的问题,而线段和(差)问题,要归归于几何模型:(1)归于“两点之间的

2、连线中,线段最短”凡属于求“变动的两线段之和的最小值”时,大都应用这一模型(2)归于“三角形两边之差小于第三边”凡属于求“变动的两线段之差的最大值”时,大都应用这一模型 两条动线段的和的最小值问题,常见的是典型的“牛喝水”问题,关键是指出一条对称轴“河流”(如图1)三条动线段的和的最小值问题,常见的是典型的“台球两次碰壁”或“光的两次反射”问题,关键是指出两条对称轴“反射镜面”(如图2)两条线段差的最大值问题,一般根据三角形的两边之差小于第三边,当三点共线时,两条线段差的最大值就是第三边的长如图3,PA与PB的差的最大值就是AB,此时点P在AB的延长线上,即P解决线段和差的最值问题,

3、有时候求函数的最值更方便,建立一次函数或者二次函数求解最值问题【解题类型及其思路】解决平面几何最值问题的常用的方法有:(1)应用两点间线段最短的公理(含应用三角形的三边关系)求最值;(2)应用垂线段最短的性质求最值;(3)应用轴对称的性质求最值;(4)应用二次函数求最值;(5)应用其它知识求最值。【典例指引】类型一 【确定线段(或线段的和,差)的最值或确定点的坐标】 【典例指引1】(2018·天津中考模拟)如图,在平面直角坐标系中,长方形OABC的顶点A、C分别在x轴、y轴的正半轴上点B的坐标为(8,4),将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E(I)证明:EO=

4、EB;()点P是直线OB上的任意一点,且OPC是等腰三角形,求满足条件的点P的坐标;()点M是OB上任意一点,点N是OA上任意一点,若存在这样的点M、N,使得AM+MN最小,请直接写出这个最小值【答案】(I)证明见解析;()P的坐标为(4,2)或(,)或P(,)或(,);()【解析】分析:()由折叠得到DOB=AOB,再由BCOA得到OBC=AOB,即OBC=DOB,即可;()设出点P坐标,分三种情况讨论计算即可;()根据题意判断出过点D作OA的垂线交OB于M,OA于N,求出DN即可详解:()将该长方形沿OB翻折,点A的对应点为点D,OD与BC交于点E,DOB=AOB,BCOA,OBC=AOB

5、,OBC=DOB,EO=EB;()点B的坐标为(8,4),直线OB解析式为y=x,点P是直线OB上的任意一点,设P(a,a)O(0,0),C(0,4),OC=4,PO2=a2+(a)2=a2,PC2=a2+(4-a)2当OPC是等腰三角形时,可分三种情况进行讨论:如果PO=PC,那么PO2=PC2,则a2=a2+(4-a)2,解得a=4,即P(4,2);如果PO=OC,那么PO2=OC2,则a2=16,解得a=±,即P(,)或P(-,-);如果PC=OC时,那么PC2=OC2,则a2+(4-a)2=16,解得a=0(舍),或a=,即P(,);故满足条件的点P的坐标为(4,2)或(,)

6、或P(-,-)或(,);()如图,过点D作OA的垂线交OB于M,交OA于N,此时的M,N是AM+MN的最小值的位置,求出DN就是AM+MN的最小值由(1)有,EO=EB,长方形OABC的顶点A,C分别在x轴、y轴的正半轴上,点B的坐标为(8,4),设OE=x,则DE=8-x,在RtBDE中,BD=4,根据勾股定理得,DB2+DE2=BE2,16+(8-x)2=x2,x=5,BE=5,CE=3,DE=3,BE=5,BD=4,SBDE=DE×BD=BE×DG,DG=,由题意有,GN=OC=4,DN=DG+GN=+4=即:AM+MN的最小值为点睛:此题是四边形综合题,主要考查了矩

7、形的性质,折叠的性质,勾股定理,等腰三角形的性质,极值的确定,进行分类讨论与方程思想是解本题的关键【举一反三】(2020·云南初三)如图,抛物线y=ax2+bx+3经过点 B(1,0),C(2,3),抛物线与y轴的焦点A,与x轴的另一个焦点为D,点M为线段AD上的一动点,设点M的横坐标为t(1)求抛物线的表达式;(2)过点M作y轴的平行线,交抛物线于点P,设线段PM的长为1,当t为何值时,1的长最大,并求最大值;(先根据题目画图,再计算)(3)在(2)的条件下,当t为何值时,PAD的面积最大?并求最大值;(4)在(2)的条件下,是否存在点P,使PAD为直角三角形?若存在,直接写出t的

8、值;若不存在,说明理由【答案】(1)y=x2+2x+3;(2)当t=时,l有最大值,l最大=;(3)t=时,PAD的面积的最大值为;(4)t=.【解析】试题分析:(1)利用待定系数法即可解决问题;(2)易知直线AD解析式为y=-x+3,设M点横坐标为m,则P(t,-t2+2t+3),M(t,-t+3),可得l=-t2+2t+3-(-t+3)=-t2+3t=-(t-)2+,利用二次函数的性质即可解决问题;(3)由SPAD=×PM×(xD-xA)=PM,推出PM的值最大时,PAD的面积最大;(4)如图设AD的中点为K,设P(t,-t2+2t+3)由PAD是直角三角形,推出PK=

9、AD,可得(t-)2+(-t2+2t+3-)2=×18,解方程即可解决问题;试题解析:(1)把点 B(1,0),C(2,3)代入y=ax2+bx+3,则有,解得,抛物线的解析式为y=x2+2x+3(2)在y=x2+2x+3中,令y=0可得0=x2+2x+3,解得x=1或x=3,D(3,0),且A(0,3),直线AD解析式为y=x+3,设M点横坐标为m,则P(t,t2+2t+3),M(t,t+3),0t3,点M在第一象限内,l=t2+2t+3(t+3)=t2+3t=(t)2+,当t=时,l有最大值,l最大=;(3)SPAD=×PM×(xDxA)=PM,PM的值最大时

10、,PAD的面积中点,最大值=×=t=时,PAD的面积的最大值为(4)如图设AD的中点为K,设P(t,t2+2t+3)PAD是直角三角形,PK=AD,(t)2+(t2+2t+3)2=×18,整理得t(t3)(t2t1)=0,解得t=0或3或,点P在第一象限,t=.类型二 【确定三角形、四边形的周长的最值或符合条件的点的坐标】 【典例指引2】(2020·重庆初三期末)如图,抛物线()与双曲线相交于点、,已知点坐标,点在第三象限内,且的面积为3(为坐标原点).(1)求实数、的值;(2)在该抛物线的对称轴上是否存在点使得为等腰三角形?若存在请求出所有的点的坐标,若不存在请

11、说明理由.(3)在坐标系内有一个点,恰使得,现要求在轴上找出点使得的周长最小,请求出的坐标和周长的最小值.【答案】(1),;(2)存在,;(3)【解析】【分析】(1)由点A在双曲线上,可得k的值,进而得出双曲线的解析式设(),过A作APx轴于P,BQy轴于Q,直线BQ和直线AP相交于点M根据=3解方程即可得出k的值,从而得出点B的坐标,把A、B的坐标代入抛物线的解析式即可得到结论;(2)抛物线对称轴为,设,则可得出;然后分三种情况讨论即可;(3)设M(x,y)由MO=MA=MB,可求出M的坐标作B关于y轴的对称点B'连接B'M交y轴于Q此时BQM的周长最小用两点间的距离公式计算

12、即可【详解】(1)由知:k=xy=1×4=4,设()过A作APx轴于P,BQy轴于Q,直线BQ和直线AP相交于点M,则SAOP=SBOQ=2令:,整理得:,解得:,m0,m=-2,故把A、B带入解出:,(2)抛物线的对称轴为设,则,POB为等腰三角形,分三种情况讨论:,即,解得:,;,即,解得:,;,即,解得:;(3)设,解得:,作B关于y轴的对称点B'坐标为:(2,-2)连接B'M交y轴于Q此时BQM的周长最小=MB'+MB【名师点睛】本题是二次函数综合题考查了用待定系数法求二次函数的解析式、二次函数的性质、轴对称-最值问题等第(1)问的关键是割补法;第(2

13、)问的关键是分类讨论;第(3)问的关键是求出M的坐标【举一反三】(2019·重庆实验外国语学校初三)如图1,已知抛物线yx+3与x轴交于A和B两点,(点A在点B的左侧),与y轴交于点C(1)求出直线BC的解析式(2)M为线段BC上方抛物线上一动点,过M作x轴的垂线交BC于H,过M作MQBC于Q,求出MHQ周长最大值并求出此时M的坐标;当MHQ的周长最大时在对称轴上找一点R,使|ARMR|最大,求出此时R的坐标(3)T为线段BC上一动点,将OCT沿边OT翻折得到OCT,是否存在点T使OCT与OBC的重叠部分为直角三角形,若存在请求出BT的长,若不存在,请说明理由【答案】(1)yx+3;

14、(2)R(1,);(3)BT2或BT【解析】【分析】(1)由已知可求A(2,0),B(4,0),C(0,3),即可求BC的解析式;(2)由已知可得QMHCBO,则有QHQM,MHMQ,所以MHQ周长3QM,则求MHQ周长的最大值,即为求QM的最大值;设M(m,),过点M与BC直线垂直的直线解析式为,交点,可求出,当m2时,MQ有最大值;函数的对称轴为x1,作点M关于对称轴的对称点M'(0,3),连接AM'与对称轴交于点R,此时|ARMR|ARM'R|AM',|ARMR|的最大值为AM';求出AM'的直线解析式为,则可求;(3)有两种情况:当TC&

15、#39;OC时,GOTC';当OTBC时,分别求解即可【详解】解:(1)令y=0,即,解得,点A在点B的左侧A(2,0),B(4,0),令x=0解得y=3,C(0,3),设BC所在直线的解析式为y=kx+3,将B点坐标代入解得k=BC的解析式为y-x+3;(2)MQBC,M作x轴,QMHCBO,tanQMHtanCBO,QHQM,MHMQ,MHQ周长MQ+QH+MHQM+QM+MQ3QM,则求MHQ周长的最大值,即为求QM的最大值;设M(m,),过点M与BC直线垂直的直线解析式为,直线BC与其垂线相交的交点,当m2时,MQ有最大值,MHQ周长的最大值为,此时M(2,3),函数的对称轴为

16、x1,作点M关于对称轴的对称点M'(0,3),连接AM'与对称轴交于点R,此时|ARMR|ARM'R|AM',|ARMR|的最大值为AM';AM'的直线解析式为yx+3,R(1,);(3)当TC'OC时,GOTC',OCTOTC',BT2;当OTBC时,过点T作THx轴,OT,BOTBCO,OH,BT;综上所述:BT2或BT【点睛】本题是一道综合题,考查了二次函数一次函数和三角形相关的知识,能够充分调动所学知识是解题的关键.类型三 【确定三角形、四边形的面积最值或符合条件的点的坐标】 【典例指引3】(2019·甘

17、肃中考真题)如图,已知二次函数yx2+bx+c的图象与x轴交于点A(1,0)、B(3,0),与y轴交于点C(1)求二次函数的解析式;(2)若点P为抛物线上的一点,点F为对称轴上的一点,且以点A、B、P、F为顶点的四边形为平行四边形,求点P的坐标;(3)点E是二次函数第四象限图象上一点,过点E作x轴的垂线,交直线BC于点D,求四边形AEBD面积的最大值及此时点E的坐标【答案】(1)yx24x+3;(2)点P(4,3)或(0,3)或(2,1);(3)最大值为 ,E(,)【解析】【分析】(1)用交点式函数表达式,即可求解;(2)分当AB为平行四边形一条边、对角线,两种情况,分别求解即可;(3)利用S

18、四边形AEBDAB(yDyE),即可求解【详解】解:(1)用交点式函数表达式得:y(x1)(x3)x24x+3;故二次函数表达式为:yx24x+3;(2)当AB为平行四边形一条边时,如图1,则ABPE2,则点P坐标为(4,3),当点P在对称轴左侧时,即点C的位置,点A、B、P、F为顶点的四边形为平行四边形,故:点P(4,3)或(0,3);当AB是四边形的对角线时,如图2,AB中点坐标为(2,0)设点P的横坐标为m,点F的横坐标为2,其中点坐标为: ,即:2,解得:m2,故点P(2,1);故:点P(4,3)或(0,3)或(2,1);(3)直线BC的表达式为:yx+3,设点E坐标为(x,x24x+

19、3),则点D(x,x+3),S四边形AEBDAB(yDyE)x+3x2+4x3x2+3x,10,故四边形AEBD面积有最大值,当x,其最大值为,此时点E(,)【点睛】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系【举一反三】(2019·内蒙古中考真题)如图,在平面直角坐标系中,已知抛物线与轴交于),两点,与轴交于点,连接(1)求该抛物线的解析式,并写出它的对称轴;(2)点为抛物线对称轴上一点,连接,若,求点的坐标;(3)已知,若是抛物线上一个动点(其中),连接,求

20、面积的最大值及此时点的坐标(4)若点为抛物线对称轴上一点,抛物线上是否存在点,使得以为顶点的四边形是平行四边形?若存在,请直接写出所有满足条件的点的坐标;若不存在,请说明理由【答案】(1),对称轴;(2);(3)面积有最大值是,;(4)存在点使得以为顶点的四边形是平行四边形,或或.【解析】【分析】(1)将点A(-1,0),B(3,0)代入y=ax2+bx+2即可;(2)过点D作DGy轴于G,作DHx轴于H,设点D(1,y),在RtCGD中,CD2=CG2+GD2=(2-y)2+1,在RtBHD中,BD2=BH2+HD2=4+y2,可以证明CD=BD,即可求y的值;(3)过点E作EQy轴于点Q,

21、过点F作直线FRy轴于R,过点E作FPFR于P,证明四边形QRPE是矩形,根据SCEF=S矩形QRPE-SCRF-SEFP,代入边即可;(4)根据平行四边形对边平行且相等的性质可以得到存在点M使得以B,C,M,N为顶点的四边形是平行四边形,点M(2,2)或M(4,- )或M(-2,-);【详解】解:(1)将点代入,可得,;对称轴;(2)如图1:过点作轴于,作轴于,设点,在中,在中,在中, ;(3)如图2:过点作轴于点,过点作直线轴于,过点作于,四边形是矩形,当时,面积有最大值是,此时;(4)存在点使得以为顶点的四边形是平行四边形,设,四边形是平行四边形时,四边形时平行四边形时,;四边形时平行四

22、边形时,;综上所述:或或;【点睛】本题考查了待定系数法求二次函数解析式,二次函数的图象及性质,勾股定理,平行四边形的判定与性质,及分类讨论的数学思想.熟练掌握二次函数的性质、灵活运用勾股定理求边长、掌握平行四边形的判定方法是解题的关键【新题训练】1如图,直线y5x5交x轴于点A,交y轴于点C,过A,C两点的二次函数yax24xc的图象交x轴于另一点B.(1)求二次函数的表达式;(2)连接BC,点N是线段BC上的动点,作NDx轴交二次函数的图象于点D,求线段ND长度的最大值;(3)若点H为二次函数yax24xc图象的顶点,点M(4,m)是该二次函数图象上一点,在x轴,y轴上分别找点F,E,使四边

23、形HEFM的周长最小,求出点F、E的坐标【答案】(1) yx24x5;(2)254;(3) F (137,0),E(0,133)【解析】【分析】(1)先根据坐标轴上点的坐标特征由一次函数的表达式求出A,C两点的坐标,再根据待定系数法可求二次函数的表达式;(2)根据坐标轴上点的坐标特征由二次函数的表达式求出B点的坐标,根据待定系数法可求一次函数BC的表达式,设ND的长为d,N点的横坐标为n,则N点的纵坐标为-n+5,D点的坐标为D(n,-n2+4n+5),根据两点间的距离公式和二次函数的最值计算可求线段ND长度的最大值;(3)由题意可得二次函数的顶点坐标为H(2,9),点M的坐标为M(4,5),

24、作点H(2,9)关于y轴的对称点H1,可得点H1的坐标,作点M(4,5)关于x轴的对称点HM1,可得点M1的坐标连结H1M1分别交x轴于点F,y轴于点E,可得H1M1+HM的长度是四边形HEFM的最小周长,再根据待定系数法可求直线H1M1解析式,根据坐标轴上点的坐标特征可求点F、E的坐标【详解】解:(1)直线y5x5交x轴于点A,交y轴于点C,A(1,0),C(0,5),二次函数yax24xc的图象过A,C两点,0a-4+cc5 ,解得a-1c5 ,二次函数的表达式为yx24x5;(2)如解图,第2题解图点B是二次函数的图象与x轴的交点,由二次函数的表达式为yx24x5得,点B的坐标B(5,0

25、),设直线BC解析式为ykxb,直线BC过点B(5,0),C(0,5),5k+b0b5 ,解得k-1b5 ,直线BC解析式为yx5,设ND的长为d,N点的横坐标为n,则N点的坐标为(n,n5),D点的坐标为(n,n24n5),则d|n24n5(n5)|,由题意可知:n24n5n5,dn24n5(n5)n25n(n52)2254,当n52时,线段ND长度的最大值是254;(3)点M(4,m)在抛物线yx24x5上,m5,M(4,5)抛物线yx24x5(x2)29,顶点坐标为H(2,9),如解图,作点H(2,9)关于y轴的对称点H1,则点H1的坐标为H1(2,9);作点M(4,5)关于x轴的对称点

26、M1,则点M1的坐标为M1(4,5),连接H1M1分别交x轴于点F,y轴于点E,H1M1HM的长度是四边形HEFM的最小周长,则点F,E即为所求的点设直线H1M1的函数表达式为ymxn,直线H1M1过点H1(2,9),M1(4,5),9=-2m+n-5=4m+n ,解得m=-73n=133 ,y73x133,当x0时,y133,即点E坐标为(0,133),当y0时,x137,即点F坐标为(137,0),故所求点F,E的坐标分别为(137,0),(0,137)2(2019·江苏中考真题)如图,已知等边ABC的边长为8,点P是AB边上的一个动点(与点A、B不重合),直线l是经过点P的一条

27、直线,把ABC沿直线l折叠,点B的对应点是点B.(1)如图1,当PB=4时,若点B恰好在AC边上,则AB的长度为_;(2)如图2,当PB=5时,若直线l/AC,则BB的长度为 ;(3)如图3,点P在AB边上运动过程中,若直线l始终垂直于AC,ACB的面积是否变化?若变化,说明理由;若不变化,求出面积;(4)当PB=6时,在直线l变化过程中,求ACB面积的最大值.【答案】(1)4;(2)5;(3)面积不变,SACB=;(4)24+4【解析】【分析】(1)证明APB是等边三角形即可解决问题;(2)如图2中,设直线l交BC于点E,连接B B交PE于O,证明PEB是等边三角形,求出OB即可解决问题;(

28、3)如图3中,结论:面积不变,证明B B/AC即可;(4)如图4中,当PBAC时,ACB的面积最大,设直线PB交AC于点E,求出BE即可解决问题.【详解】(1)如图1,ABC为等边三角形,A=60°,AB=BC=CA=8,PB=4,PB=PB=PA=4,A=60°,APB是等边三角形,AB=AP=4,故答案为4; (2)如图2,设直线l交BC于点E,连接B B交PE于O,PEAC,BPE=A=60°,BEP=C=60°,PEB是等边三角形,PB=5,B、B关于PE对称,BBPE,BB=2OB,OB=PB·sin60°=,BB=5,故答

29、案为5;(3)如图3,结论:面积不变.过点B作BEAC于E,则有BE=AB·sin60°=,SABC=16,B、B关于直线l对称,BB直线l,直线lAC,AC/BB,SACB=SABC=16;(4)如图4,当BPAC时,ACB的面积最大,设直线PB交AC于E,在RtAPE中,PA=2,PAE=60°,PE=PA·sin60°=,BE=BP+PE=6+,SACB最大值=×(6+)×8=24+4.【点睛】本题是几何变换综合题,考查了等边三角形的判定与性质,轴对称变换,解直角三角形,平行线的判定与性质等知识,理解题意,熟练掌握和灵

30、活运用相关知识是解题的关键.3(2019·湖南中考真题)如图,在平面直角坐标系xOy中,矩形ABCD的边AB4,BC6若不改变矩形ABCD的形状和大小,当矩形顶点A在x轴的正半轴上左右移动时,矩形的另一个顶点D始终在y轴的正半轴上随之上下移动(1)当OAD30°时,求点C的坐标;(2)设AD的中点为M,连接OM、MC,当四边形OMCD的面积为时,求OA的长;(3)当点A移动到某一位置时,点C到点O的距离有最大值,请直接写出最大值,并求此时cosOAD的值【答案】(1)点C的坐标为(2,3+2);(2)OA3;(3)OC的最大值为8,cosOAD【解析】【分析】(1)作CEy

31、轴,先证CDEOAD30°得CECD2,DE,再由OAD30°知ODAD3,从而得出点C坐标;(2)先求出SDCM6,结合S四边形OMCD知SODM,SOAD9,设OAx、ODy,据此知x2+y236,xy9,得出x2+y22xy,即xy,代入x2+y236求得x的值,从而得出答案;(3)由M为AD的中点,知OM3,CM5,由OCOM+CM8知当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD的交点为M,ONAD,证CMDOMN得,据此求得MN,ON,ANAMMN,再由OA及cosOAD可得答案【详解】(1)如图1,过点C作CEy轴于点E,矩形ABCD

32、中,CDAD,CDE+ADO90°,又OAD+ADO90°,CDEOAD30°,在RtCED中,CECD2,DE2,在RtOAD中,OAD30°,ODAD3,点C的坐标为(2,3+2);(2)M为AD的中点,DM3,SDCM6,又S四边形OMCD,SODM,SOAD9,设OAx、ODy,则x2+y236,xy9,x2+y22xy,即xy,将xy代入x2+y236得x218,解得x3(负值舍去),OA3;(3)OC的最大值为8,如图2,M为AD的中点,OM3,CM5,OCOM+CM8,当O、M、C三点在同一直线时,OC有最大值8,连接OC,则此时OC与AD

33、的交点为M,过点O作ONAD,垂足为N,CDMONM90°,CMDOMN,CMDOMN,即,解得MN,ON,ANAMMN,在RtOAN中,OA,cosOAD【点睛】本题是四边形的综合问题,解题的关键是掌握矩形的性质、勾股定理、相似三角形的判定与性质等知识点4.(2018·江苏中考真题)如图,在平面直角坐标系中,一次函数y=x+4的图象与x轴和y轴分别相交于A、B两点动点P从点A出发,在线段AO上以每秒3个单位长度的速度向点O作匀速运动,到达点O停止运动,点A关于点P的对称点为点Q,以线段PQ为边向上作正方形PQMN设运动时间为t秒(1)当t=秒时,点Q的坐标是 ;(2)在运

34、动过程中,设正方形PQMN与AOB重叠部分的面积为S,求S与t的函数表达式;(3)若正方形PQMN对角线的交点为T,请直接写出在运动过程中OT+PT的最小值【答案】(1)(4,0);(2)当0t1时,S =t2;当1t时,S =t2+18t;当t2时, S =3t2+12;(3)OT+PT的最小值为【解析】【分析】(1)先确定出点A的坐标,进而求出AP,利用对称性即可得出结论;(2)分三种情况,利用正方形的面积减去三角形的面积,利用矩形的面积减去三角形的面积,利用梯形的面积,即可得出结论;(3)先确定出点T的运动轨迹,进而找出OT+PT最小时的点T的位置,即可得出结论【详解】(1)令y=0,x

35、+4=0,x=6,A(6,0),当t=秒时,AP=3×=1,OP=OAAP=5,P(5,0),由对称性得,Q(4,0);(2)当点Q在原点O时,OQ=6,AP=OQ=3,t=3÷3=1,当0t1时,如图1,令x=0,y=4,B(0,4),OB=4,A(6,0),OA=6,在RtAOB中,tanOAB=,由运动知,AP=3t,P(63t,0),Q(66t,0),PQ=AP=3t,四边形PQMN是正方形,MNOA,PN=PQ=3t,在RtAPD中,tanOAB=,PD=2t,DN=t,MNOADCN=OAB,tanDCN=,CN=t,S=S正方形PQMNSCDN=(3t)2t&

36、#215;t=t2;当1t时,如图2,同的方法得,DN=t,CN=t,S=S矩形OENPSCDN=3t×(63t)t×t=t2+18t;当t2时,如图3,S=S梯形OBDP=(2t+4)(63t)=3t2+12;(3)如图4,由运动知,P(6-3t,0),Q(6-6t,0),M(6-6t,3t),T是正方形PQMN的对角线交点,T(6-),点T是直线y=-x+2上的一段线段,(-3x6),同理:点N是直线AG:y=-x+6上的一段线段,(0x6),G(0,6),OG=6,A(6,0),AG=6,在RtABG中,OA=6=OG,OAG=45°,PNx轴,APN=90

37、°,ANP=45°,TNA=90°,即:TNAG,T正方形PQMN的对角线的交点,TN=TP,OT+TP=OT+TN,点O,T,N在同一条直线上(点Q与点O重合时),且ONAG时,OT+TN最小,即:OT+TN最小,SOAG=OA×OG=AG×ON,ON=即:OT+PT的最小值为3【点睛】此题是一次函数综合题,主要考查了正方形的面积,梯形,三角形的面积公式,正方形的性质,勾股定理,锐角三角函数,用分类讨论的思想解决问题是解本题的关键,找出点T的位置是解本题(3)的难点5.(2020·江苏初三期末)已知二次函数的图象和轴交于点、,与轴交

38、于点,点是直线上方的抛物线上的动点.(1)求直线的解析式.(2)当是抛物线顶点时,求面积.(3)在点运动过程中,求面积的最大值.【答案】(1);(2)3;(3)面积的最大值为.【解析】【分析】(1)由题意分别将x=0、y=0代入二次函数解析式中求出点C、A的坐标,再根据点A、C的坐标利用待定系数法即可求出直线AC的解析式;(2)由题意先根据二次函数解析式求出顶点,进而利用割补法求面积;(3)根据题意过点作轴交于点并设点的坐标为(),则点的坐标为进而进行分析.【详解】解:(1) 分别将x=0、y=0代入二次函数解析式中求出点C、A的坐标为;将;代入,得到直线的解析式为.(2)由,将其化为顶点式为

39、,可知顶点P为,如图P为顶点时连接PC并延长交x轴于点G,则有,将P点和C点代入求出PC的解析式为,解得G为,所有=3;(3)过点作轴交于点.设点的坐标为(),则点的坐标为,当时,取最大值,最大值为.,面积的最大值为.【点睛】本题考查待定系数法求一次函数解析式、二次函数图象上点的坐标特征、等腰三角形的性质、二次函数的性质以及解二元一次方程组,解题的关键是利用待定系数法求出直线解析式以及利用二次函数的性质进行综合分析.6(2020·江苏初三期末)如图,抛物线交轴于、两点,交轴于点,点的坐标为,直线经过点、.(1)求抛物线的函数表达式;(2)点是直线上方抛物线上的一动点,求面积的最大值并

40、求出此时点的坐标;(3)过点的直线交直线于点,连接,当直线与直线的一个夹角等于的3倍时,请直接写出点的坐标.【答案】(1);(2),点坐标为;(3)点的坐标为, 【解析】【分析】(1)利用B(5,0)用待定系数法求抛物线解析式;(2)作PQy轴交BC于Q,根据求解即可;(3)作CAN=NAM1=ACB,则A M1B=3ACB, 则 NAM1 A C M1,通过相似的性质来求点M1的坐标;作ADBC于D,作M1关于AD的对称点M2, 则A M2C=3ACB,根据对称点坐标特点可求M2的坐标.【详解】(1)把代入得.;(2)作PQy轴交BC于Q,设点,则 OB=5,Q在BC上,Q的坐标为(x,x-

41、5),PQ=,=当时,有最大值,最大值为,点坐标为.(3)如图1,作CAN=NAM1=ACB,则A M1B=3ACB, CAN=NAM1,AN=CN,=-(x-1)(x-5),A的坐标为(1,0),C的坐标为(0,-5),设N的坐标为(a,a-5),则,a= ,N的坐标为(,),AN2=,AC2=26,NAM1=ACB,N M1A=C M1A, NAM1 A C M1,设M1的坐标为(b,b-5),则,b1= ,b2=6(不合题意,舍去),M1的坐标为,如图2,作ADBC于D,作M1关于AD的对称点M2, 则A M2C=3ACB,易知ADB是等腰直角三角形,可得点D的坐标是(3,-2),M2

42、横坐标= ,M2 纵坐标= ,M2 的坐标是,综上所述,点M的坐标是或.【点睛】本题考查了二次函数与几何图形的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质及相似三角形的判定与性质,会运用分类讨论的思想解决数学问题7.(2019·石家庄市第四十一中学初三)如图,在平面直角坐标系中,抛物线yx(xb)12与y轴相交于A点,与x轴相交于B、C两点,且点C在点B的右侧,设抛物线的顶点为P(1)若点B与点C关于直线x1对称,求b的值;(2)若OBOA,求BCP的面积;(3)当1x1时,该抛物线上最高点与最低点纵坐标的差为h,求出h与b的关系;若h有最大值或最小值,直接写出这个最大

43、值或最小值【答案】(1)2(2)2764(3)h存在最小值,最小值为1【解析】【分析】(1)由点B与点C关于直线x1对称,可得出抛物线的对称轴为直线x1,再利用二次函数的性质可求出b值;(2)利用二次函数图象上点的坐标特征可求出点A的坐标,结合OAOB可得出点B的坐标,由点B的坐标利用待定系数法可求出抛物线的解析式,由抛物线的解析式利用二次函数图象上点的坐标特征可求出点C的坐标,利用配方法可求出点P的坐标,再利用三角形的面积公式即可求出BCP的面积;(3)分b2,0b2,2b0和b2四种情况考虑,利用二次函数图象上点的坐标特征结合二次函数的图象找出h关于b的关系式,再找出h的最值即可得出结论【详解】解:(1)点B与点C关于直线x1对称,yx(xb)12x2bx12,-b21,解得:b2(2)当x0时,yx2bx1212,点A的坐标为(0,12)又OBOA,点B的坐标为(12,0)将B(12,0)代入yx2bx12,得:014+12b12,解得:b12,抛物线的解析式为yx212x12y

展开阅读全文
相关资源
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(原卷版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题04 几何最值存在性问题(原卷版)(免费下载).doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题09 动态几何定值问题(解析版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题09 动态几何定值问题(解析版)(免费下载).doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题09 动态几何定值问题(原卷版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题09 动态几何定值问题(原卷版)(免费下载).doc
  • 2021-2022年收藏的精品资料专题04 几何最值存在性问题玩转压轴题争取满分之备战中考数学解答题高端精品解析版.doc2021-2022年收藏的精品资料专题04 几何最值存在性问题玩转压轴题争取满分之备战中考数学解答题高端精品解析版.doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题08 方案设计型问题(解析版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题08 方案设计型问题(解析版)(免费下载).doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题03 相似三角形的存在性问题(解析版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题03 相似三角形的存在性问题(解析版)(免费下载).doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题07 几何图形动点运动问题(解析版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题07 几何图形动点运动问题(解析版)(免费下载).doc
  • 2021-2022年收藏的精品资料专题04 几何最值存在性问题玩转压轴题争取满分之备战中考数学解答题高端精品原卷版.doc2021-2022年收藏的精品资料专题04 几何最值存在性问题玩转压轴题争取满分之备战中考数学解答题高端精品原卷版.doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题06 图形运动中的计算说理问题(解析版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题06 图形运动中的计算说理问题(解析版)(免费下载).doc
  • 玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题05 图形运动中的函数关系问题(解析版)(免费下载).doc玩转压轴题争取满分之备战2020年中考数学解答题高端精品专题05 图形运动中的函数关系问题(解析版)(免费下载).doc
  • 相关搜索

    当前位置:首页 > 教育专区 > 初中资料

    本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

    工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁