《2021小学1~6年纪数学教案.docx》由会员分享,可在线阅读,更多相关《2021小学1~6年纪数学教案.docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2021小学16年纪数学教案2021小学16年纪数学教案 数学是其他自然学科的皇后,良好的数学素养离不开周密、严谨的思维。当然,这种严谨的思维习惯,不是靠教师的严厉逼出来的,而是要让学生在切身的体验中、在解决问题的活动中慢慢养成。教师所能做的职能是引导。以下是我整理的关于小学数学教案,欢迎查阅! 小学数学教案1 课上,学生四人一组围桌而坐。桌面上摆放着水杯、可乐瓶、圆形纸片、刻度尺、绳子和剪刀。吴老师说:“龙潭湖公园有一个圆形花坛,为了保护花草,准备沿花坛围一圈篱笆,需要多长的篱笆呢?你们能帮助解决这个问题吗?请用手中的工具,小组合作探索周长的计算方法。”话音一落,学生们就忙开了。他们兴致勃勃
2、的设想着各种方法,全身心投入到问题的探索之中。 过了一会儿,小组代表开始发言。A组抢先说:“我们小组是把圆形纸片立起来放在刻度尺上滚动一圈,就测出了它的长度。” 吴老师肯定了他们积极动手、动脑参与学习,但同时提出:“如果有一个很大的圆形水池,要求它的周长,能用你们小组的方法把水池立起来在刻度尺上滚动一圈吗?” “是啊,行吗?”A组的同学陷入了沉思。 接着,B组代表有几分得意地向大家推荐自己小组的做法:“我们研究了一个好方法,先用绳子在水池周围绕一圈,再量一量绳子的长度,不就是水池的长度了吗?” “好!好!这的确是个不错的方法。”吴老师称赞道。这话在B组同学的脸上洒下了一片灿烂。 停顿片刻,吴老
3、师拿出了一端系有小球的线绳,在空中旋转了一圈,又旋转了一圈,问:“小球走过的地方形成了一个圆,要想求这个圆的周长,还能用你们的方法吗?”同学们摇摇头,再次陷入沉思。 “我们又发现了一种求圆周长的方法。”一个兴奋的声音从教室里掠过,C组的同学发言了:“将这张圆形的纸对折三次,这样圆形的周长就被平均分成8段,我们测量出每条线断的长度是2厘米,8段是16厘米,也就是圆的周长。” 很有创意,吴老师竖起大拇指,“你们用折纸的方法求出这个圆的周长,很了不起。但是用滚动的方法、绳绕的方法、折纸的方法只能求出某些圆的周长,都有局限性。我们能不能找到一条球圆周长的普遍规律呢? 学生的思维又活跃起来,把对圆周长的
4、探索推向了一个新的高潮。 经过一番思考,学生们提出了这样一个问题:“是什么决定了圆周长的长短?圆的周长到底与什么有关系?”观察、操作、实验,同学们终于发现圆的周长是它的直径的三倍多一些。 规律找到了,同学们沉浸在成功的喜悦之中 点评:吴老师善于创造绚丽的思维波澜景观,她总是恰到好处地打破学生的思维平衡,使学生原有的认识、经验受到挑战,形成适当的失衡,从而促使学生去探索、去创造,以寻找新的答案。如此循环往复,就使得学生的思维一步步深化,一步步逼近真理,一次比一次飞溅起更高的浪花。 (五)分数的初步认识 在“分数的初步认识”这一课上,吴老师请部分同学到黑板上用画图的方式表示自己心目中的一半。学生按
5、照自己的想象,划出了不同的1/2图。 “同学们,你们知道有一种非常科学简单的表示方法吗?”在学生们七嘴八舌的猜测中,她自然而然的引出了1/2的概念,然后问:“那你们看1/2能不能代表你们画的这些图的意思呢?”“如果你认为它可以,就把你画的图擦掉,如果你认为1/2没有你画的图漂亮或不能代表,可以不擦掉。”多数同学都擦了,只有几位同学没有擦。没关系,吴老师等待着,让他们慢慢去体会。 在临下课前,吴老师安排了一个环节,请两个同学到黑板前用画图的方法来表示5/100。画着画着,一个男孩对老师说;“画不了了,太麻烦了。”吴老师问:“那你说是画图好还是分数好?”“分数好。”看来他是真的体会到分数的价值了。
6、另一位女同学还在埋头画她的5/100,吴老师又在分母上加了一个“0”,变成了5/1000。微笑着对同学们说:“她愿意画就画吧。”5/1000该怎么用画图表示呢?就让女孩继续想吧,最终她会感悟到用分数表示这个关系是又准确又简单的。 点评:这种等待在课堂上是经常需要的。这是一份源自博爱的宽容。宽容让学生敢于展示真实的自我,勇于正视自己的不足,宽容让学生的智慧充分涌流。 一个教师之所以博大,就在于它告别了强迫学生认同的习惯,学会了等待,学会了宽容 小学数学教案2 吴:你们喜欢什么球类运动? 生1:我喜欢足球。 生2:篮球。 生3:乒乓球。 吴:由于受到场地的限制,我们只能在这里进行一次拍球比赛,你们
7、看怎么样? 生:好。 吴:那我们以这里为界,一分为二,这边算一队,那边算一队。第一件事,先给自己的队起一个自己喜欢的名字,然后派一个代表把名字写在黑板上。第二件事,咱们得商量商量,这么多小朋友参加比赛怎么个比法,你们得出点招儿。听懂了吗? (学生七嘴八舌商量开了,一分钟后,一个同学在黑板上写了“胜利队”。另一对也写了“吴正队”) 吴 :吴正是什么意思? 生:因为您的课讲得特别好,我们用您的名字,一定能赢。 吴:行行行。队名产生了,那咱们怎么比呢? 生:选出每个队最厉害的一位参加比赛。 吴:那你们选吧,再挑一个裁判,每队再请一个小朋友纪录。 预备,开始!20秒后,吴老师喊停,然后统计:“吴正队”
8、:30,“胜利队”:29。 下面我宣布,本次比赛胜利者为“吴正队”。“胜利队”服不服气? “胜利队”:不服气! 吴:为什么? 生:就一个人能代表我们吗?应该每队再选几个。 吴:我建议每队再选三个人,好吗? (每队三人继续比赛,老师把每个人的拍球数写在黑板上。) 吴:下面用最快的速度算出“胜利队”和“吴正队”的总数各是多少,报数。 生;118,124. 吴:现在胜利者是“吴正队”,可以吗? 生:不可以。 (这时,吴老师走到胜利队同学面前。) 吴:别急,虽然现在咱们落后,但吴老师决定加入“胜利队”,欢迎吗? 胜利队:欢迎! 吴:现在把吴老师拍的22个加进来,算一算一共多少个? 生;140个。 吴;
9、下面我宣布,今天的胜利者是“胜利队”。 生:不同意! 吴:为什么? 生;胜利队有5次拍球机会,我们只有4次,不公平。 吴;哦,在人数不等的情况下,我们还用总数这个统计量来比较,显然不公平,那么,在人数不等的情况下,我们能不能比出两个队总体的拍球水平呢? (学生开始思考,相互交流。) (终于有一个声音出现了:在人数不等的情况下,可以先求平均数。) 吴:怎样求平均数呀? 生;就是用拍球的总数,除以拍球的人数。 点评:排球是孩子喜欢的游戏,吴老师把游戏引进课堂的时候,在许多环节上都进行了改造:让学生自拟队名、自定比赛规则,是要培养学生的参与意识,是为了激发学生内在的学习动力;教师选择加入,是为了加深
10、学生对平均数意义的体会,从而激发学生对平均数知识学习的需要。实际上,几乎每个环节都自然的指向对平均数的理解。一个原生态的生活情境,是难以有如此明显而丰富的教学意义的。 小学数学教案3 (二)二 分之 一 “把一个圆分成两份,每一份一定是它的1/2吗?”在学习1/2时,这个问题搅起了课堂的波澜。每个同学经过独立思考都纷纷发表了自己的意见,有的同意,有的不同意,无形之中就形成了两大阵营。正方、反方分别选出两名代表站在台前,一场唇枪舌战即将开始。 吴老师顺手递给一边一张圆纸片,宣布:“同意不同意都要提出问题,如果能问得对方心服口服,同意了你的观点,就是胜利者。这张纸可以折,可以撕。下面的同学两人一组
11、,先讨论一下。” 讨论过后,同学们把目光集中到讲台前,吴老师对座位上的学生说:“我们请正方和反方的代表发表自己的意见,可以吗?我们静静的听,然后还可以发表自己的意见,看那位同学最会倾听别人的发言。”辩论开始。正方同学把圆从中间对折,问:“这一半不是1/2?既然你们都承认,为什么不给老师画勾?”大有先声夺人之势。 反方同学把圆随意撕了一小块下来,问:“这圆是不是两部分?” 正方:“是。” 反方:“这两半都是圆的1/2吗?” 正方:“不是。” 反方:“既然不是,为什么你们还认定把一个圆分成两份,每一份都一定是1/2呢?”好一个咄咄逼人的反问。 正方仍然不服气:“我们怎么就得到1/2呢?” 坐着的同
12、学开始按捺不住了,举手发言。一个说:“这个圆可以折成1/2,也可以不折成1/2。”真是一语中的。 另一个说:“如果一个圆平均分成两份,每份是1/2,但这里说分成两份,怎么分都行。”他在“分成两份”上特别加重了语气。理越辩越明,几个回合下来,大家就达成了共识:这句话错就错在“一定”上,如果一定是1/2的话,前面应该加上“平均”这个词。这是对分数本质意义的认识。 点评:数学是其他自然学科的皇后,良好的数学素养离不开周密、严谨的思维。当然,这种严谨的思维习惯,不是靠教师的严厉逼出来的,而是要让学生在切身的体验中、在解决问题的活动中慢慢养成。教师所能做的职能是引导。 小学数学教案4 “平均数”教学实录
13、 一、建立意义 师:你们喜欢体育运动吗? 生:(齐)喜欢! 师:如果张老师告诉大家,我最喜欢并且最拿手的体育运动是篮球,你们相信吗? 生:不相信。篮球运动员通常都很强壮,就像姚明和乔丹那样。张老师,您也太瘦了点。 师:真是哪壶不开提哪壶啊。不过还别说,和你们一样,我们班上的小强、小林、小刚对我的投篮技术也深表怀疑。就在上星期,他们三人还约我进行了一场“1分钟投篮挑战赛”。怎么样,想不想了解现场的比赛情况? 生:(齐)想! 师:首先出场的是小强,他1分钟投中了5个球。可是,小强对这一成绩似乎不太满意,觉得好像没有发挥出自己的真实水平,想再投两次。如果你是张老师,你会同意他的要求吗? 生:我不同意
14、。万一他后面两次投中的多了,那我不就危险啦! 生:我会同意的。做老师的应该大度一点。 师:呵呵,还真和我想到一块儿去了。不过,小强后两次的投篮成绩很有趣。 (师出示小强的后两次投篮成绩:5个,5个。生会心地笑了) 师:还真巧,小强三次都投中了5个。现在看来,要表示小强1分钟投中的个数,用哪个数比较合适? 生:5。 师:为什么? 生:他每次都投中5个,用5来表示他1分钟投中的个数最合适了。 师:说得有理!接着该小林出场了。小林1分钟又会投中几个呢?我们也一起来看看吧。 (师出示小林第一次投中的个数:3个) 师:如果你是小林,会就这样结束吗? 生:不会!我也会要求再投两次的。 师:为什么? 生:这
15、也太少了,肯定是发挥失常。 师:正如你们所说的,小林果然也要求再投两次。不过,麻烦来了。(出示小林的后两次成绩:5个,4个)三次投篮,结果怎么样? 生:(齐)不同。 师:是呀,三次成绩各不相同。这一回,又该用哪个数来表示小林1分钟投篮的一般水平呢? 生:我觉得可以用5来表示,因为他最多,二次投中了5个。 生:我不同意川、强每次都投中5个,所以用5来表示他的成绩。但小林另外两次分别投中4个和3个,怎么能用5来表示呢? 师:也就是说,如果也用5来表示,对小强来说 生:(齐)不公平! 师:该用哪个数来表示呢? 生:可以用4来表示,因为3、4、5三个数,4正好在中间,最能代表他的成绩。 师:不过,小林
16、一定会想,我毕竟还有一次投中5个,比4个多1呀。 生:(齐)那他还有一次投中3个,比4个少1呀。 师:哦,一次比4多1,一次比4少1? 生:那么,把5里面多的1个送给3,这样不就都是4个了吗? (师结合学生的交流,呈现移多补少的过程,如图1) 师:数学上,像这样从多的里面移一些补给少的,使得每个数都一样多。这一过程就叫“移多补少”。移完后,小林每分钟看起来都投中了几个? 生:(齐)4个。 师:能代表小林1分钟投篮的一般水平吗? 生:(齐)能! 师:轮到小刚出场了。(出示图2)小刚也投了三次,成绩同样各不相同。这一回,又该用几来代表他1分钟投篮的一般水平呢?同学们先独立思考,然后在小组里交流自己
17、的想法。 生:我觉得可以用4来代表他1分钟的投篮水平。他第二次投中7个,可以移1个给第一次,再移2个给第三次,这样每一次看起来好像都投中了4个。所以用4来代表比较合适。 (结合学生交流,师再次呈现移多补少过程,如图3) 师:还有别的方法吗? 生:我们先把小刚三次投中的个数相加,得到12个,再用12除以3等于4个。所以,我们也觉得用4来表示小刚1分钟投篮的水平比较合适。 师:像这样先把每次投中的个数合起来,然后再平均分给这三次(板书:合并、平分),能使每一次看起来一样多吗? 生:能!都是4个。 师:能不能代表小刚1分钟投篮的一般水平? 生:能! 师:其实,无论是刚才的移多补少,还是这回的先合并再
18、平均分,目的只有一个,那就是 生:使原来几个不相同的数变得同样多。 师:数学上,我们把通过移多补少后得到的同样多的这个数,就叫做原来这几个数的平均数。(板书课题:平均数)比如,在这里(出示图1),我们就说4是3、4、5这三个数的平均数。那么,在这里(出示图3),哪个数是哪几个数的平均数呢?在小组里说说你的想法。 生:在这里,4是3、7、2这三个数的平均数。 师:不过,这里的平均数4能代表小刚第一次投中的个数吗? 生:不能! 师:能代表小刚第二次、第三次投中的个数吗? 生:也不能! 师:奇怪,这里的平均数4既不能代表小刚第一次投中的个数,也不能代表他第二次、第三次投中的个数,那它究竟代表的是哪一
19、次的个数呢? 生:这里的4代表的是小刚三次投篮的平均水平。 生:是小刚1分钟投篮的一般水平。 (师板书:一般水平) 师:最后,该我出场了。知道自己投篮水平不怎么样,所以正式比赛前,我主动提出投四次的想法。没想到,他们竟一口答应了。前三次投篮已经结束,怎么样,想不想看看我每一次的投篮情况? (师呈现前三次投篮成绩:4个、6个、5个,如图4) 师:猜猜看,三位同学看到我前三次的投篮成绩,可能会怎么想? 生:他们可能会想:完了完了,肯定输了。 师:从哪儿看出来的? 生:你们看,光前三次,张老师平均1分钟就投中了5个,和小强并列第一。更何况,张老师还有一次没投呢。 生:我觉得不一定。万一张老师最后一次
20、发挥失常,一个都没投中,或只投中一两个,张老师也可能会输。 生:万一张老师最后一次发挥超常,投中10个或更多,那岂不赢定了? 师:情况究竟会怎么样呢?还是让我们赶紧看看第四次投篮的成绩吧。 (师出示图5) 师:凭直觉,张老师最终是赢了还是输了? 生:输了。因为你最后一次只投中1个,也太少了。 师:不计算,你能大概估计一下,张老师最后的平均成绩可能是几个吗? 生:大约是4个。 生:我也觉得是4个。 师:英雄所见略同呀。不过,第二次我明明投中了6个,为什么你们不估计我最后的平均成绩是6个? 生:不可能,因为只有一次投中6个,又不是次次都投中6个。 生:前三次的平均成绩只有5个,而最后一次只投中1个
21、,平均成绩只会比5个少,不可能是6个。 生:再说,6个是最多的一次,它还要移一些补给少的。所以不可能是6个。 师:那你们为什么不估计平均成绩是1个呢?最后一次只投中1个呀! 生:也不可能。这次尽管只投中1个,但其他几次都比1个多,移一些补给它后,就不 师:这样看来,尽管还没得出结果,但我们至少可以肯定,最后的平均成绩应该比这里最大的数 生:小一些。 生:还要比最小的数大一些。 生:应该在最大数和最小数之间。 师:是不是这样呢?赶紧想办法算算看吧。 师:和刚才估计的结果比较一下,怎么样? 生:的确在最大数和最小数之间。 师:现在看来,这场投篮比赛是我输了。你们觉得问题主要出在哪儿? 生:最后一次
22、投得太少了。 生:如果最后一次多投几个,或许你就会赢了。 师:试想一下:如果张老师最后一次投中5个,甚至更多一些,比如9个,比赛结果又会如何呢?同学们可以通过观察来估一估,也可以动笔算一算,然后在小组里交流你的想法。 (生估计或计算,随后交流结果) 生:如果最后一次投中5个,那么只要把第二次多投的1个移给第一次,很容易看出,张老师1分钟平均能投中5个。 师:你是通过移多补少得出结论的。还有不同的方法吗? 生:我还有补充!其实不用算也能知道是5个。大家想呀,原来第四次只投中1个,现在投中了5个,多出4个。平均分到每一次上,每一次正好能分到1个,结果自然就是5个了。 师:那么,最后一次如果从原来的
23、1个变成9个,平均数又会增加多少呢? 生:应该增加2。因为9比1多8,多出的8个再平均分到四次上,每一次只增加了2个。所以平均数应增加2个。 二、深化理解 师:现在,请大家观察下面的三幅图,你有什么发现?把你的想法在小组里说一说。 (师出示图6、图7、图8,三图并排呈现) 20_(请自填)最新小学16年纪数学教案相关文章: 20_(请自填)新人教版小学三年级数学上册教案 20_(请自填)新人教版二年级上册数学教案 20_(请自填)新人教版二年级上册数学教案大全 20_(请自填)三年级数学人教版教案范文大全 小学一年级数学下册第六单元整合教案 20_(请自填)小学数学三角形所有角教案优秀范文合集大全 20_(请自填)二年级上册数学教案人教版范文 小学一年级数学20以内的退位减法优秀教案三篇 小学三年级数学教案最新人教版 20_(请自填)春季学期小学六年级开学第一课班会教案范文 17 / 17