2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用同步训练试卷(精选含答案).docx

上传人:可**** 文档编号:46219531 上传时间:2022-09-25 格式:DOCX 页数:18 大小:264.60KB
返回 下载 相关 举报
2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用同步训练试卷(精选含答案).docx_第1页
第1页 / 共18页
2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用同步训练试卷(精选含答案).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用同步训练试卷(精选含答案).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用同步训练试卷(精选含答案).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、九年级数学下册第二十五章 概率的求法与应用同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在一个不透明的袋中装有只有颜色不同的白球和红球共20个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球

2、,记下颜色后再放回袋中;然后再重复上述步骤;如表是实验中记录的部分统计数据:摸球次数40506080100200摸到红球次数191013162040则袋中的红球可能有()A8个B6个C4个D2个2、不透明的袋子里装有7个只有颜色不同的球,其中3个黑球,4个白球,搅匀后任意摸出一个球,是白球的概率是( )ABCD3、掷一个骰子时,点数小于2的概率是( )ABCD04、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为( )ABCD5、盒子中装有形状、大小完全相同的3个小球,球上分别标有数字1,1,2,从中随机取出一个,其上的数字记为k1放回后再取一次,其上的

3、数记为k2,则一次函数yk1x+b与第一象限内y的增减性一致的概率为()ABCD6、在相同条件下,移植10000棵幼苗,有8000棵幼苗成活,估计在相同条件下移植一棵这种幼苗成活的概率为( )A0.1B0.2C0.9D0.87、如图所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图所示的折线统计图,由此估计不规则图案的面积大约是( )Aa2Bab

4、Cb2Dab8、如图,正方形ABCD内接于O,在这个圆面上随意抛一粒豆子(豆子大小忽略不计),若豆子落在正方形ABCD内的概率记为P1,豆子落在图中阴影部分内的概率记为P2,则对P1和P2的大小判断正确的是()AP1P2BP1P2CP1P2D与圆的半径有关9、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD10、将三粒均匀的分别标有1,2,3,4,5,6的正六面体骰子同时掷出,出现的数字分别为a,b,c,则a,b,c正好是直角三角形三边长的概率是( ).ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、粉

5、笔盒中有10支白色粉笔盒若干支彩色粉笔,每支粉笔除颜色外均相同,从中随机拿一支粉笔,拿到白色的概率为,则其中彩色粉笔的数量为_支2、在一个不透明的口袋中装有若干个只有颜色不同的球,如果已知袋中只有4个红球,且摸出红球的概率为,那么袋中的球共有_个3、时隔十三年,奥运圣火再次在北京点燃北京将首次举办冬奥会,成为国际上唯一举办过夏季和冬季奥运会的“双奥之城”墩墩和融融积极参加雪上项目的训练,现有三辆车按照1,2,3编号,两人可以任选坐一辆车去训练,则两人同坐2号车的概率是_4、从2,1,1,3,5五个数中随机选取一个数作为二次函数yax2+x3中a的值,则二次函数图象开口向上的概率是 _5、学校决

6、定从甲、乙、丙三名学生中随机抽取两名介绍学习经验,则同时抽到乙、丙两名同学的概率为_三、解答题(5小题,每小题10分,共计50分)1、在一次数学兴趣小组活动中,小李和小王两位同学设计了如图所示的两个转盘做游戏(每个转盘被分成面积相等的几个扇形,并在每个扇形区域内标上数字)游戏规则如下:两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和小于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)(1)请用列表或画树状图的方法分别求出小李和小王获胜的概率;(2)这个游戏公平吗?若不公平,请你设计一个公平的游戏规则2、一个不透

7、明的袋中装有2个红球、1个白球,这些球除颜色外,没有任何其他区别有如下两个活动:活动1:从袋中随机摸出一个球,记录下颜色,然后从袋中剩余的球中再随机摸出一个球,摸出的两个球都是红球的概率记为;活动2:从袋中随机摸出一个球,记录下颜色,然后把这个球放回袋中并摇匀,重新从袋中随机摸出一个球,两次摸出的球都是红球的概率记为请你猜想,的大小关系,并用画树状图或列表的方法列出所有可能的结果,验证你的猜想3、防疫期间,全市所有学校都严格落实测体温进校园的防控要求某校开设了甲、乙、丙三个测温通道,某天早晨,该校小明和小丽两位同学将随机通过测温通道进入校园(1)小明从乙测温通道通过的概率是_;(2)利用画树状

8、图或列表的方法,求小明和小丽从同一个测温通道通过的概率4、在一个不透明的盒子中有3个红球和1个白球,它们除颜色外其它都一样,从盒子中摸出两个球,求摸出的两个球都是红球的概率5、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“4070分钟以内完成”,C表示“7090分钟以内完成”,D表示“90分钟以上完成”根据调查结果,绘制成两种不完整的统计图请结合统计图,回答下列问题(1)这次调查的总人数是 人;(2)扇形统计图中,B类扇形的圆心角是 ;(3)在

9、D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率-参考答案-一、单选题1、C【分析】首先估计摸到红球的概率,然后求得白球概率,根据球的总个数求得答案即可【详解】解:摸球200次红球出现了40次,摸到红球的概率约为,20个球中有白球204个,故选:C【点睛】本题考查用频率估计概率,大量反复试验下频率稳定值即为概率,掌握相关知识是解题关键2、C【分析】直接根据概率公式求解即可【详解】解:装有7个只有颜色不同的球,其中4个白球,从布袋中随机摸出一个球,摸出的球是白球的概率故选:C【点睛】本题考查的是

10、概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键3、A【分析】让骰子里小于2的数的个数除以数的总数即为所求的概率【详解】解:掷一枚均匀的骰子时,有6种情况,即1、2、3、4、5、6,出现小于2的点即1点的只有一种,故其概率是故选:A【点睛】本题考查了概率公式的应用,解题的关键是注意概率所求情况数与总情况数之比4、D【分析】直接利用概率公式求出即可【详解】解:共四名候选人,男生3人,选到男生的概率是:故选:D【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比5、B【分析】分别计算所有情况数及满足条件的情况数,代入概率

11、计算公式,可得答案【详解】盒子中装有形状、大小完全相同的3个小球,球上分别标有数字-1,1,2,从中随机取出一个,其上的数字记为,放回后再取一次,其上的数记为,则共有9种情况,分别为:(-1,-1),(-1,1),(-1,2),(1,-1),(1,1),(1,2),(2,-1),(2,1),(2,2),一次函数yk1x+b与第一象限内y的增减性一致的有:(-1,1),(-1,2),一次函数yk1x+b与第一象限内y的增减性一致的概率为故选B【点睛】此题考查概率计算公式,判断一次函数与反比例函数的增减性,解题关键在于列出所有可能出现的情况6、D【分析】利用成活的树的数量总数即可得解【详解】解:8

12、00010000=0.8,故选:D【点睛】此题主要考查了概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率7、B【分析】本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】解:假设不规则图案面积为x m2,用一个长为a,宽为b的长方形长方形面积为abm2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其

13、频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:0.35,解得xab故选:B【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高8、B【分析】求落在正方形和阴影部分内的概率,可直接求正方形的面积和阴影部分的面积即可得出二者的大小关系【详解】解:设的半径为r,则正方形的对角线为2r,故选:B【点睛】题目主要考查概率的比较,包括正方形和圆的基本性质,熟练掌握正方形和圆的基本性质是解题关键9、C【分析】用3的倍数的个数除以数的总数即为所求的

14、概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比10、C【分析】本题是一个由三步才能完成的事件,共有666=216种结果,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,找出勾股数的情况,因而得出是直角三角形三边长的概率即可【详解】本题是一个由三步才能完成的事件,共有666=216种结果,每种结果出现的机会相同,a,b,c正好是直角三角形三边长,则它们应该是一组勾股数,在这216组数中,是勾股数的有3,4,5;3,5,4;4,3,5;4,5,3

15、;5,3,4;5,4,3共6种情况,因而a,b,c正好是直角三角形三边长的概率是故选:C【点睛】本题主要考查了等可能事件的概率,属于基础题,用到的知识点为:概率等于所求情况数与总情况数之比;3,4,5为三角形三边的三角形是直角三角形二、填空题1、15【分析】设彩色笔的数量为x支,然后根据概率公式列出方程求解即可【详解】解:设彩色笔的数量为x支,由题意得:,解得,经检验是原方程的解,彩色笔为15支,故答案为:15【点睛】本题主要考查了概率公式和分式方程,解题的关键在于能够熟练掌握概率公式列出方程进行求解2、10【分析】设袋中共有x个球,再由袋中只装有4个红球,且摸出红球的概率为求出x的值即可【详

16、解】解:设袋中共有x个球,袋中只装有4个红球,且摸出红球的概率为,解得x=10经检验,x=10是分式方程的解,且符合题意,故答案为:10【点睛】本题考查的是概率公式,熟知随机事件A的概率P(A)=事件A可能出现的结果数与所有可能出现的结果数的商是解答此题的关键3、【分析】先画树状图得到所有的等可能性的结果数,然后找到两人同坐2号车的结果数,再依据概率公式求解即可【详解】解:列树状图如下:由树状图可知一共有9种等可能性的结果数,其中两人同坐2号车的结果数为1种,两人同坐2号车的概率,故答案为:【点睛】本题主要考查了树状图法或列表法求解概率,熟知树状图或列表法求解概率是解题的关键4、【分析】二次函

17、数图象开口向上得出a0,从所列5个数中找到a0的个数,再根据概率公式求解可得【详解】解:从2,1,1,3,5五个数中随机选取一个数,共有5种等可能结果,其中使该二次函数图象开口向上的有1,3,5这3种结果,该二次函数图象开口向上的概率为,故答案为:【点睛】本题主要考查概率公式及二次函数的性质,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数所有可能出现的结果数5、【分析】画树状图,共有6种等可能的结果,同时抽到乙、丙两名同学的结果有2个,再由概率公式解题【详解】解:画树状图如图:共有6个等可能的结果,同时抽到乙、丙两名同学的结果有2个,同时抽到乙、丙两名同学的概率为,故答案为:

18、【点睛】本题考查列树状图表示概率,是重要考点,掌握相关知识是解题关键三、解答题1、(1)小李获胜的概率是,小王获胜的概率是;(2)不公平,见详解.【分析】(1)根据题意画出树状图,得出所有等可能的情况数,找出符合条件的情况数,再根据概率公式即可得出答案;(2)由题意根据各自得出的概率得出游戏不公平,再根据概率公式直接修改为两人获胜的概率相等即可【详解】解:(1)根据题意画图如下:由上图可知,共有12种等可能的情况数,其中指针所指区规内两数和小于11有3种,两数和大于11有6种,则小李获胜的概率是,小王获胜的概率是;(2)由(1)知,小李获胜的概率是,小王获胜的概率是,所以游戏不公平;游戏规则:

19、两人分别同时转动甲、乙转盘,转盘停止后,若指针所指区域内两数和不大于11,则小李获胜;若指针所指区域内两数和大于11,则小王获胜(若指针停在等分线上,重转一次,直到指针指向某一份内为止)【点睛】本题考查的是游戏公平性的判断注意掌握判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比2、,验证过程见解析【分析】首先根据题意分别根据列表法列出两个活动所有情况,再利用概率公式即可求得答案【详解】活动1:红球1红球2白球红球1(红1,红2)(红1,白)红球2(红2,红1)(红2,白)白球(白,红1)(白,红2)共有6种等可能的结果,摸到两个红

20、球的有2种情况,摸出的两个球都是红球的概率记为活动2:红球1红球2白球红球1(红1,红1)(红1,红2)(红1,白)红球2(红2,红1)(红2,红2)(红2,白)白球(白,红1)(白,红2)(白,白)共有9种等可能的结果,摸到两个红球的有4种情况,摸出的两个球都是红球的概率记为【点睛】此题考查了列表法或树状图法求概率用到的知识点为:概率=所求情况数与总情况数之比重点需要注意球放回与不放回的区别3、(1);(2)【分析】(1)根据题意直接利用概率公式求解即可得出答案;(2)由题意先列表得出所有等可能结果,从中找到符合条件的结果数,再利用概率公式进行计算可得【详解】解:(1)小明从乙测温通道通过的

21、概率是,故答案为:;(2)列表格如下:甲乙丙甲甲,甲乙,甲丙,甲乙甲,乙乙,乙丙,乙C甲,丙乙,丙丙,C由表可知,共有9种等可能的结果,其中小明和小丽从同一个测温通道通过的有3种可能,所以小明和小丽从同一个测温通道通过的概率为.【点睛】本题考查的是用列表法或画树状图法求概率注意列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,用到的知识点为:概率=所求情况数与总情况数之比4、【分析】画树状图,共有12个等可能的结果,再找出符合条件的结果数,然后由概率公式求解即可【详解】解:画树状图为:共有12个等可能的结果,一次摸出的两个球都是红球的情况有6个P(一次摸出的两个球都是红球)【点睛】本题考

22、查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率5、(1)40;(2)108;(3)【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可【详解】解:(1)参加这次调查的学生总人数为615%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360=108,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,所抽取的2名学生恰好是1名男生和1名女生的概率为【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比也考查了统计图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁