《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用专项测评试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析京改版九年级数学下册第二十五章-概率的求法与应用专项测评试卷(含答案解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、中国象棋文化历史久远在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的
2、所有位置已用“”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是( )ABCD2、一个不透明的袋子中装有四个小球,它们除了分别标有的数字1,2,3,6不同外,其他完全相同,任意从袋子中摸出一球后不放回,再任意摸出一球,则两次摸出的球所标数字之积为6的概率是()ABCD3、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62
3、000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D14、抛掷一枚质地均匀的硬币三次,恰有两次正面向上的概率是( )ABCD5、一个袋子中放有4个红球和6个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率是( )ABCD6、在一个不透明的布袋中装有45个白球和若干个黑球,除颜色外其他都相同,小强每次摸出一个球记录下颜色后并放回,通过多次试验后发现,摸到黑球的频率稳定在0.4左右,则布袋中黑球的个数可能有( )A18B27C36D307、假如每个鸟卵都可以成功孵化小鸟,且孵化出的小鸟是雄
4、性和雌性的可能性相等现有2枚鸟卵,孵化出的小鸟恰有一个雌性一个雄性的概率是( )ABCD8、如图所示,平整的地面上有一个不规则图案(图中阴影部分),为了了解该图案的面积是多少,我们采取了以下办法:用一个长为a,宽为b的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),现将若干次有效实验的结果绘制成了如图所示的折线统计图,由此估计不规则图案的面积大约是( )Aa2BabCb2Dab9、在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概
5、率是()ABCD10、某小组做“当试验次数很大时,用频率估计概率”的试验时,统计了某一结果出现的频率表格如下,则符合这一结果的试验最有可能的是( ) 次数1002003004005006007008009001000频率0.600.300.500.360.420.380.410.390.400.40A掷一枚质地均匀的骰子,向上面的点数是“5”B掷一枚一元的硬币,正面朝上C不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球D三张扑克牌,分别是3、5、5,背面朝上洗匀后,随机抽出一张是5第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、用抽签的办法从 A
6、、B 、C 、D 四人中任选一人去打扫公共场地,选中 A 的概率是_2、某次体能测试,要求每名考生从跳绳、长跑、游泳三个项目中随机抽取一项参加测试,小东和小华都抽到游泳项目的概率是_3、掷一枚质地均匀的硬币8次,其中3次正面朝上,5次反面朝上,现再掷一次,正面朝上的概率是 _4、学校组织秋游,安排给九年级3辆车,小明和小慧都可以从这3辆车中任选一辆搭乘则小明和小慧同车的概率为 _5、有四张正面分别标有数字-4,-3,-2,1,的不透明卡片,它们除数字不同外其他全部相同,现将它们背面朝上,洗匀后从中抽取一张,将该卡片上的数字记为,则使得二次函数当时随的增大而减小,且一元二次方程有两个不相等的实数
7、根的概率是_三、解答题(5小题,每小题10分,共计50分)1、今年夏天,某市出现大暴雨,部分街区积水严重,小明和小亮所在的社区为了做好排涝工作,特招募社区抗涝志愿工作者小明和小亮决定报名参加,根据规定,志愿者会被随机分到A(淤泥清理),B(垃圾搬运),C(街道冲洗),D(消毒灭杀)其中一组(1)志愿者小明被分配到D组服务是 A不可能事件;B随机事件;C必然事件;D确定事件(2)请用列表或画树状图的方法,求出志愿者小明和小亮被分配到同一组服务的概率2、新年即将来临,利群商场为了吸引顾客,特别设计了一种促销活动:在一个不透明的箱子里放有4个除数字外完全相同的小球,球上分别标有“0元”、“10元”、
8、“20元”和“30元”的字样规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回)商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元(1)该顾客至少可得到 元购物券;(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于40元的概率3、邮票素有“国家名片”之称,方寸之间,包罗万象为宣传2022年北京冬奥会,中国邮政发行了一套冬奥会邮票,其中有一组展现雪上运动的邮票,如图所示:某班级举行冬奥会有奖问答活动,答对的同学可以随机抽取邮票作为奖品(1)在抢答环节中,若答对一题,可从4枚邮票中任意抽取1枚作
9、为奖品,则恰好抽到“冬季两项”的概率是_;(2)在抢答环节中,若答对两题,可从4枚邮票中任意抽取2枚作为奖品,请用列表或画树状图的方法,求恰好抽到“高山滑雪”和“自由式滑雪”的概率4、有四张大小、质地都相同的不透明卡片,上面分别标有数字1,2,3,4(背面完全相同),现将标有数字的一面朝下,洗匀后从中任意抽取一张,记下数字后放回洗匀,然后再从中任意抽取一张,请用画树状图或列表的方法,求两次抽取的卡片上的数字和等于5的概率5、现有A、B两个不透明袋子,分别装有3个除颜色外完全相同的小球其中,A袋装有2个白球,1个红球;B袋装有2个红球,1个白球小华和小林商定了一个游戏规则:从摇匀后的A,B两袋中
10、随机摸出一个小球,摸出的这两个小球,若颜色相同,则小华获胜;若颜色不同,则小林获胜请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平,如果不公平,谁获胜的机会大-参考答案-一、单选题1、C【分析】用“-”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案【详解】解:观察“馬”移动一次能够到达的所有位置,即用“”标记的有8处,位于“-”(图中虚线)的上方的有2处,所以“馬”随机移动一次,到达的位置在“-”上方的概率是,故选:C【点睛】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=2、D【分析
11、】先列表展示所有可能的结果数为12,再找出两次摸出的球所标数字之积为6的结果数,然后根据概率的概念计算即可【详解】解:列表如下:所有等可能的情况有12种,其中两次摸出的球所标数字之积为6的有4种结果,所以两次摸出的球所标数字之积为6的概率为=.故答案为:D【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验用到的知识点为:概率=所求情况数与总情况数之比3、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为
12、0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案【详解】解:该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率4、C【分析】根据随机掷一枚质地均匀的硬币三次,可以分别假设出三次情况,画出树状图即可【详解】解:列树状图如下所示:
13、 根据树状图可知一共有8种等可能性的结果数,恰好有两次正面朝上的事件次数为:3,恰好有两次正面朝上的事件概率是:故选C【点睛】本题主要考查了树状图法求概率,解题的关键是根据题意画出树状图5、C【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:袋子里装有10个球,4个红球,6个白球,摸出红球的概率:故选:C【点睛】本题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=6、D【分析】设黑球的个数为x个,根据频率可列出方程,解方程即可求得x
14、,从而得到答案【详解】设黑球的个数为x个,由题意得:解得:x=30经检验x=30是原方程的解则袋中黑球的个数为30个故选:D【点睛】本题考查了用频率估计概率,解方程,根据概率列出方程是关键7、D【分析】用A表示雄性,B表示雌性,画出树状图,共有4个等可能的结果,孵化出的小鸟恰有两个雌性一个雄性的结果有2个,然后根据概率公式计算即可【详解】解:用A表示雄性,B表示雌性,画树状图如图:共有4个等可能的结果,孵化出的小鸟恰有一个雌性一个雄性的结果有2个,孵化出的小鸟恰有两个雌性一个雄性的概率为;故选:D【点睛】本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比8、B【分析】本
15、题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解【详解】解:假设不规则图案面积为x m2,用一个长为a,宽为b的长方形长方形面积为abm2,根据几何概率公式小球落在不规则图案的概率为:,当事件A试验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,综上有:0.35,解得xab故选:B【点睛】本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础
16、知识要求极高9、B【分析】用黑色的小球个数除以球的总个数即可解题【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率10、C【分析】根据利用频率估计概率得到实验的概率在左右,再分别计算出四个选项中的概率,然后进行对比判断即可【详解】解:、掷一个质地均匀的骰子,向上的面点数是“5”的概率为:,不符合题意;B、抛一枚硬币,出现正面朝上的概率为,不符合题意;C、不透明的袋子里有2个红球和3个黄球,除颜色外都相同,从中任取一球是红球的概率是,符合题意;D、三张扑克牌,分别是、,背面
17、朝上洗均后,随机抽出一张是5的概率为,不符合题意故选:C【点睛】本题考查了利用频率估计概率:大数次重复实验时,事件发生的频率在某个固定位置左右波动,并且波动的幅度越来越小,根据这个稳定的频率的值,可以用估计概率,这个固定的近似值就是这个事件的概率,当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率二、填空题1、【分析】根据题干求出所有等可能的结果数,以及恰好选中A的情况数,再利用概率公式求解即可【详解】解:从A 、B 、C 、D 四人中,选一人去打扫公共场地,共4种情况,其中选中A的情况有一种,选中A去打扫公共场地的概率为P=,故答案为
18、:【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率为:P(A)=2、【分析】根据列表法求概率即可【详解】解:设跳绳、长跑、游泳三个项目分别为A,B,C,列表如下,ABCAAAABACBBABBBCCCACBCC共有9种等可能结果,小东和小华都抽到游泳项目只有1种结果,则小东和小华都抽到游泳项目的概率为故答案为:【点睛】本题考查了列表法求概率,掌握列表法求概率是解题的关键列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总情况数之比3、#【分析】直接利用概率的意义分析得出答案【详解】解:掷质地均匀硬币
19、的试验,每次正面向上和向下的概率相同,再次掷出这枚硬币,正面朝上的概率是故答案为:【点睛】此题主要考查了概率的意义,正确把握概率的意义是解题关键4、【分析】利用画树状图或列表法求概率的方法求解即可【详解】解:设三辆校车分别为1、2、3,列表如下:由表可知,一共有9种等可能的结果,其中小明和小慧同车的有3种,小明和小慧同车的概率为=,故答案为:【点睛】本题考查画树状图或列表法求概率,熟练掌握画树状图或列表法求概率的方法步骤是解答的关键5、【分析】根据二次函数的性质将的取值范围求出来,再根据一元二次方程根的判别式求出的取值范围,最后确定的取值个数,从而求出概率【详解】解:二次函数的解析式为:对称轴
20、为:,开口向上当时随的增大而减小满足该条件的为和一元二次方程有两个不相等的实数根同时满足这两个条件的的值为和同时满足这两个条件的的值的概率为:故答案为:【点睛】本题主要考查了二次函数的性质和一元二次方程根的判别式,以及求概率,熟练掌握二次函数的性质和一元二次方程根的判别式是解答本题的关键三、解答题1、(1)B;(2)志愿者小明和小亮被分配到同一组服务的概率【分析】(1)根据志愿者会被随机分到A(淤泥清理),B(垃圾搬运),C(街道冲洗),D(消毒灭杀)其中一组即可得出随机事件,随机事件是在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件(简称事件);(2)画
21、树状图列出所有等可能的情况,从中找出符合条件的情况,然后利用概率公式计算即可【详解】解:(1)志愿者会被随机分到A(淤泥清理),B(垃圾搬运),C(街道冲洗),D(消毒灭杀)其中一组,志愿者小明被分配到D组服务是:B随机事件;故答案为B;(2)根据随机事件中出现所有等可能的结果共有16种,其中志愿者小明和小亮被分配到同一组共有4种情况,志愿者小明和小亮被分配到同一组服务的概率【点睛】本题考查事件的识别,画树状图或列表求概率,掌握事件的识别方法,和画树状图方法,列举所有等可能的结果,熟记概率公式是解题关键2、(1)10;(2)列表见解析,【分析】(1)根据小球上标的金额数找出最小的两个数,然后相
22、加即可得出答案;(2)根据题意列出图表得出所有等可能的情况数和该顾客所获得购物券的金额高于40元的情况数,然后根据概率公式即可得出答案【详解】解:(1)根据题意知,该顾客可能摸出金额最小的两个球是“0元”、“10元”,故至少可得到10元购物券,故答案为:10;(2)根据题意列表如下:01020300(0,10)(0,20)(0,30)10(10,0)(10,20)(10,30)20(20,0)(20,10)(20,30)30(30,0)(30,10)(30,20)从上表可以看出,共有12种等可能结果,其中该顾客所获得购物券的金额不低于40元的结果有4种结果,所以该顾客所获得购物券的金额不低于4
23、0元的概率为【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即3、(1);(2)见解析,【分析】(1)利用简单概率公式计算即可;(2)利用画树状图或列表法,计算【详解】(1)事件一共有4种等可能性,抽到“冬季两项”这个事件只有1种可能性,恰好抽到“冬季两项”的概率是,故答案为:; (2)解:直接使用图中的序号代表四枚邮票方法一:由题意画出树状图由树状图可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或方法二:由题意列表第
24、二枚第一枚由表可知,所有可能出现的结果共有12种,即,并且它们出现的可能性相等 其中,恰好抽到“高山滑雪”和“自由式滑雪”(记为事件A)的结果有2种,即或 【点睛】本题考查了简单概率计算,画树状图或列表法计算概率,熟练画树状图或列表是解题的关键4、【分析】根据题意列出图表得出所有等可能的情况数,找出两次数字和为5的情况数,然后根据概率公式即可得出答案【详解】解:根据题意画图如下:共有16种的可能的情况数,其中两次数字和为5的有4种,则两次数字和为5的概率实数【点睛】此题考查的是用列表法或树状图法求概率列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件用到的知识点为:概率所求情况数与总情况数之比5、不公平,小林获胜的机会大【分析】根据题意列出图表得出所有等可能的结果数和颜色相同和不同的结果数,然后根据概率公式求出各自的概率,再进行比较即可得出这个游戏是否公平【详解】解:列表如下:由上表或可知,一共有9种等可能的结果,其中颜色相同的结果有4种,颜色不同的结果有5种P(颜色相同)=,P(颜色不同)=,这个游戏规则对双方不公平,小林获胜的机会大【点睛】本题考查的是游戏公平性的判断判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平用到的知识点为:概率=所求情况数与总情况数之比