2022年圆、扇形、弓形的面积-教学教案.docx

上传人:ylj18****70940 文档编号:44535533 上传时间:2022-09-21 格式:DOCX 页数:9 大小:14.42KB
返回 下载 相关 举报
2022年圆、扇形、弓形的面积-教学教案.docx_第1页
第1页 / 共9页
2022年圆、扇形、弓形的面积-教学教案.docx_第2页
第2页 / 共9页
点击查看更多>>
资源描述

《2022年圆、扇形、弓形的面积-教学教案.docx》由会员分享,可在线阅读,更多相关《2022年圆、扇形、弓形的面积-教学教案.docx(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2022年圆、扇形、弓形的面积教学教案圆、扇形、弓形的面积(一)教学目标:1、驾驭扇形面积公式的推导过程,初步运用扇形面积公式进行一些有关计算;2、通过扇形面积公式的推导,培育学生抽象、理解、概括、归纳实力和迁移实力;3、在扇形面积公式的推导和例题教学过程中,渗透“从特别到一般,再由一般到特别”的辩证思想教学重点:扇形面积公式的导出及应用教学难点:对图形的分析教学活动设计: (一)复习(圆面积)已知O半径为R,O的面积S是多少? S=R2 我们在求面积时往往只须要求出圆的一部分面积,如图中阴影图形的面积为了更好探讨这样的图形引出一个概念扇形:一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇

2、形提出新问题:已知O半径为R,求圆心角n的扇形的面积(二)迁移方法、探究新问题、归纳结论1、迁移方法老师引导学生迁移推导弧长公式的方法步骤:(1)圆周长C=2R;(2)1圆心角所对弧长= ;(3)n圆心角所对的弧长是1圆心角所对的弧长的n倍;(4)n圆心角所对弧长= 归纳结论:若设O半径为R, n圆心角所对弧长l,则 (弧长公式)2、探究新问题老师组织学生对比探讨:(1)圆面积S=R2;(2)圆心角为1的扇形的面积= ;(3)圆心角为n的扇形的面积是圆心角为1的扇形的面积n倍;(4)圆心角为n的扇形的面积= 归纳结论:若设O半径为R,圆心角为n的扇形的面积S扇形,则S扇形= (扇形面积公式)(

3、三)理解公式老师引导学生理解:(1)在应用扇形的面积公式S扇形= 进行计算时,要留意公式中n的意义n表示1圆心角的倍数,它是不带单位的;(2)公式可以理解记忆(即根据上面推导过程记忆);提出问题:扇形的面积公式与弧长公式有联系吗?(老师组织学生探讨)S扇形= lR想一想:这个公式与什么公式类似?(老师引导学生进行,或小组协作探讨)与三角形的面积公式类似,只要把扇形看成一个曲边三角形,把弧长l看作底,R看作高就行了这样对比,帮助学生记忆公式事实上,把扇形的弧分得越来越小,作经过各分点的半径,并顺次连结各分点,得到越来越多的小三角形,那么扇形的面积就是这些小三角形面积和的极限要让学生在理解的基础上

4、记住公式(四)应用练习:1、已知扇形的圆心角为120,半径为2,则这个扇形的面积,S扇=_2、已知扇形面积为 ,圆心角为120,则这个扇形的半径R=_3、已知半径为2的扇形,面积为 ,则它的圆心角的度数=_4、已知半径为2cm的扇形,其弧长为 ,则这个扇形的面积,S扇=_5、已知半径为2的扇形,面积为 ,则这个扇形的弧长=_( ,2,120, , )例1、已知正三角形的边长为a,求它的内切圆与外接圆组成的圆环的面积学生独立完成,对基础较差的学生老师指导(1)怎样求圆环的面积?(2)假如设外接圆的半径为R,内切圆的半径为r, R、r与已知边长a有什么联系?解:设正三角形的外接圆、内切圆的半径分别

5、为R,r,面积为S1、S2S= ,S= 说明:要留意整体代入对于教材中的例2,可以采纳典型例题中第4题,充分让学生探究课堂练习:教材P181练习中2、4题(五)总结学问:扇形及扇形面积公式S扇形= ,S扇形= lR方法实力:迁移实力,对比方法;计算实力的培育(六)作业 教材P181练习1、3;P187中10圆、扇形、弓形的面积(二)教学目标:1、在复习巩固圆面积、扇形面积的计算的基础上,会计算弓形面积;2、培育学生视察、理解实力,综合运用学问分析问题和解决问题的实力;3、通过面积问题实际应用题的解决,向学生渗透理论联系实际的观点教学重点:扇形面积公式的导出及应用教学难点:对图形的分解和组合、实

6、际问题数学模型的建立教学活动设计:(一)概念与相识弓形:由弦及其所对的弧组成的图形叫做弓形弦AB把圆分成两部分,这两部分都是弓形弓形是一个最简洁的组合图形之一(二)弓形的面积提出问题:怎样求弓形的面积呢?学生以小组的形式探讨,沟通归纳出结论: (1)当弓形的弧小于半圆时,弓形的面积等于扇形面积与三角形面积的差; (2)当弓形的弧大于半圆时,它的面积等于扇形面积与三角的面积的和; (3)当弓形弧是半圆时,它的面积是圆面积的一半 理解:假如组成弓形的弧是半圆,则此弓形面积是圆面积的一半;假如组成弓形的弧是劣弧则它的面积等于以此劣弧为弧的扇形面积减去三角形的面积;假如组成弓形的弧是优弧,则它的面积等

7、于以此优弧为弧的扇形面积加上三角形的面积也就是说:要计算弓形的面积,首先视察它的弧属于半圆?劣弧?优弧?只有对它分解正确才能保证计算结果的正确(三)应用与反思练习:(1)假如弓形的弧所对的圆心角为60,弓形的弦长为a,那么这个弓形的面积等于_;(2)假如弓形的弧所对的圆心角为300,弓形的弦长为a,那么这个弓形的面积等于_(学生独立完成,巩固新学问)例3、水平放着的圆柱形排水管的截面半径是0.6m,其中水面高是0.3m求截面上有水的弓形的面积(精确到0.01m2) 老师引导学生并渗透数学建模思想,分析:(1)“水平放着的圆柱形排水管的截面半径是0.6m”为你供应了什么数学信息?(2)求截面上有

8、水的弓形的面积为你供应什么信息?(3)扇形、三角形、弓形是什么关系,选择什么公式计算?学生完成解题过程,并归纳三角形OAB的面积的求解方法 反思:要注意题目的信息,处理信息;归纳三角形OAB的面积的求解方法,依据条件特征,敏捷应用公式;弓形的面积可以选用图形分解法,将它转化为扇形与三角形的和或差来解决例4、已知:O的半径为R,直径ABCD,以B为圆心,以BC为半径作 求 与 围成的新月牙形ACED的面积S解: ,有 , , , 组织学生反思解题方法:图形的分解与组合;公式的敏捷应用(四)总结1、弓形面积的计算:首先看弓形弧是半圆、优弧还是劣弧,从而选择分解方案;2、应用弓形面积解决实际问题;3

9、、分解简洁组合图形为规则圆形的和与差(五)作业 教材P183练习2;P188中12圆、扇形、弓形的面积(三)教学目标:1、驾驭简洁组合图形分解和面积的求法;2、进一步培育学生的视察实力、发散思维实力和综合运用学问分析问题、解决问题的实力;3、渗透图形的外在美和内在关系教学重点:简洁组合图形的分解教学难点:对图形的分解和组合教学活动设计:(一)学问回顾复习提问:1、圆面积公式是什么?2、扇形面积公式是什么?如何选择公式?3、当弓形的弧是半圆时,其面积等于什么?4、当弓形的弧是劣弧时,其面积怎样求?5、当弓形的弧是优弧时,其面积怎样求?(二)简洁图形的分解和组合1、图形的组合 让学生相识图形,并体验图形的外在美,激发学生的探讨爱好,促进学生的创建力 2、提出问题:正

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作计划

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁