第3讲 因动点产生的直角三角形问题.doc

上传人:九****飞 文档编号:4314712 上传时间:2021-08-19 格式:DOC 页数:18 大小:964.50KB
返回 下载 相关 举报
第3讲 因动点产生的直角三角形问题.doc_第1页
第1页 / 共18页
第3讲 因动点产生的直角三角形问题.doc_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《第3讲 因动点产生的直角三角形问题.doc》由会员分享,可在线阅读,更多相关《第3讲 因动点产生的直角三角形问题.doc(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、第3讲 因动点产生的直角三角形问题例1上海市虹口区中考模拟第25题如图1,在RtABC中,ACB90,AB13,CD/AB,点E为射线CD上一动点(不与点C重合),联结AE交边BC于F,BAE的平分线交BC于点G (1)当CE3时,求SCEFSCAF的值;(2)设CEx,AEy,当CG2GB时,求y与x之间的函数关系式;(3)当AC5时,联结EG,若AEG为直角三角形,求BG的长 图1思路点拨1第(1)题中的CEF和CAF是同高三角形,面积比等于底边的比2第(2)题中的ABC是斜边为定值的形状不确定的直角三角形3第(3)题中的直角三角形AEG分两种情况讨论满分解答(1)如图2,由CE/AB,得

2、由于CEF与CAF是同高三角形,所以SCEFSCAF313(2)如图3,延长AG交射线CD于M 图2由CM/AB,得所以CM2AB26由CM/AB,得EMABAM 又因为AM平分BAE,所以BAMEAM所以EMAEAM所以yEAEM26x图3 图4(3)在RtABC中, AB13,AC5,所以BC12如图 4,当AGE90时,延长EG交AB于N,那么AGEAGN所以G是EN的中点 所以G是BC的中点,BG6如图5,当AEG90时,由CAFEGF,得由CE/AB,得所以又因为AFGBFA,所以AFGBFA所以FAGB所以GABB所以GAGB作GHAH,那么BHAH在RtGBH中,由cosB,得B

3、G图5 图6考点伸展第(3)题的第种情况,当AEG90时的核心问题是说理GAGB如果用四点共圆,那么很容易如图6,由A、C、E、G四点共圆,直接得到24上海版教材不学习四点共圆,比较麻烦一点的思路还有:如图7,当AEG90时,设AG的中点为P,那么PC和PE分别是RtACG和RtAEG斜边上的中线,所以PCPEPAPG所以122,325如图8,在等腰PCE中,CPE1802(45),又因为CPE180(13),所以132(45)所以124所以24B所以GABB所以GAGB图7 图8例2 苏州市中考第29题如图1,二次函数ya(x22mx3m2)(其中a、m是常数,且a0,m0)的图像与x轴分别

4、交于A、B(点A位于点B的左侧),与y轴交于点C(0,3),点D在二次函数的图像上,CD/AB,联结AD过点A作射线AE交二次函数的图像于点E,AB平分DAE(1)用含m的式子表示a; (2)求证:为定值;(3)设该二次函数的图像的顶点为F探索:在x轴的负半轴上是否存在点G,联结GF,以线段GF、AD、AE的长度为三边长的三角形是直角三角形?如果存在,只要找出一个满足要求的点G即可,并用含m的代数式表示该点的横坐标;如果不存在,请说明理由 图1思路点拨1不算不知道,一算真奇妙通过二次函数解析式的变形,写出点A、B、F的坐标后,点D的坐标也可以写出来点E的纵坐标为定值是算出来的2在计算的过程中,

5、第(1)题的结论及其变形反复用到3注意到点E、D、F到x轴的距离正好是一组常见的勾股数(5,3,4),因此过点F作AD的平行线与x轴的交点,就是要求的点G满分解答(1)将C(0,3)代入ya(x22mx3m2),得33am2因此(2)由ya(x22mx3m2)a(xm)(x3m)a(xm)24axm2a(xm)24,得A(m, 0),B(3m, 0),F(m, 4),对称轴为直线xm所以点D的坐标为(2m,3)设点E的坐标为(x, a(xm)(x3m)如图2,过点D、E分别作x轴的垂线,垂足分别为D、E由于EAEDAD,所以因此所以am(x3m)1结合,于是得到x4m当x4m时,ya(xm)(

6、x3m)5am25所以点E的坐标为(4m, 5)所以图2 图3(3)如图3,由E(4m, 5)、D(2m,3)、F(m,4),可知点E、D、F到x轴的距离分别为5、4、3那么过点F作AD的平行线与x轴的负半轴的交点,就是符合条件的点G证明如下:作FFx轴于F,那么因此所以线段GF、AD、AE的长围成一个直角三角形此时GF4m所以GO3m,点G的坐标为(3m, 0)考点伸展第(3)题中的点G的另一种情况,就是GF为直角三角形的斜边此时因此所以此时 例3 山西省中考第26题如图1,抛物线与x轴交于A、B两点(点B在点A的右侧),与y轴交于点C,连结BC,以BC为一边,点O为对称中心作菱形BDEC,

7、点P是x轴上的一个动点,设点P的坐标为(m, 0),过点P作x轴的垂线l交抛物线于点Q(1)求点A、B、C的坐标;(2)当点P在线段OB上运动时,直线l分别交BD、BC于点M、N试探究m为何值时,四边形CQMD是平行四边形,此时,请判断四边形CQBM的形状,并说明理由;(3)当点P在线段EB上运动时,是否存在点Q,使BDQ为直角三角形,若存在,请直接写出点Q的坐标;若不存在,请说明理由 图1 思路点拨1第(2)题先用含m的式子表示线段MQ的长,再根据MQDC列方程2第(2)题要判断四边形CQBM的形状,最直接的方法就是根据求得的m的值画一个准确的示意图,先得到结论3第(3)题BDQ为直角三角形

8、要分两种情况求解,一般过直角顶点作坐标轴的垂线可以构造相似三角形满分解答(1)由,得A(2,0),B(8,0),C(0,4)(2)直线DB的解析式为由点P的坐标为(m, 0),可得,所以MQ当MQDC8时,四边形CQMD是平行四边形解方程,得m4,或m0(舍去)此时点P是OB的中点,N是BC的中点,N(4,2),Q(4,6)所以MNNQ4所以BC与MQ互相平分所以四边形CQBM是平行四边形图2 图3(3)存在两个符合题意的点Q,分别是(2,0),(6,4)考点伸展第(3)题可以这样解:设点Q的坐标为如图3,当DBQ90时, 所以解得x6此时Q(6,4)如图4,当BDQ90时, 所以解得x2此时

9、Q(2,0)图3 图4例4广州市中考第24题如图1,抛物线与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C(1)求点A、B的坐标;(2)设D为已知抛物线的对称轴上的任意一点,当ACD的面积等于ACB的面积时,求点D的坐标;(3)若直线l过点E(4, 0),M为直线l上的动点,当以A、B、M为顶点所作的直角三角形有且只有三个时,求直线l的解析式 图1 思路点拨1根据同底等高的三角形面积相等,平行线间的距离处处相等,可以知道符合条件的点D有两个2当直线l与以AB为直径的圆相交时,符合AMB90的点M有2个;当直线l与圆相切时,符合AMB90的点M只有1个3灵活应用相似比解题比较简便满分解答

10、(1)由,得抛物线与x轴的交点坐标为A(4, 0)、B(2, 0)对称轴是直线x1(2)ACD与ACB有公共的底边AC,当ACD的面积等于ACB的面积时,点B、D到直线AC的距离相等过点B作AC的平行线交抛物线的对称轴于点D,在AC的另一侧有对应的点D设抛物线的对称轴与x轴的交点为G,与AC交于点H由BD/AC,得DBGCAO所以所以,点D的坐标为因为AC/BD,AGBG,所以HGDG而DHDH,所以DG3DG所以D的坐标为图2 图3(3)过点A、B分别作x轴的垂线,这两条垂线与直线l总是有交点的,即2个点M以AB为直径的G如果与直线l相交,那么就有2个点M;如果圆与直线l相切,就只有1个点M

11、了联结GM,那么GMl在RtEGM中,GM3,GE5,所以EM4在RtEM1A中,AE8,所以M1A6所以点M1的坐标为(4, 6),过M1、E的直线l为根据对称性,直线l还可以是考点伸展第(3)题中的直线l恰好经过点C,因此可以过点C、E求直线l的解析式在RtEGM中,GM3,GE5,所以EM4在RtECO中,CO3,EO4,所以CE5因此三角形EGMECO,GEMCEO所以直线CM过点C例5 杭州市中考第22题在平面直角坐标系中,反比例函数与二次函数yk(x2x1)的图象交于点A(1,k)和点B(1,k)(1)当k2时,求反比例函数的解析式;(2)要使反比例函数与二次函数都是y随x增大而增

12、大,求k应满足的条件以及x的取值范围;(3)设二次函数的图象的顶点为Q,当ABQ是以AB为斜边的直角三角形时,求k的值思路点拨1由点A(1,k)或点B(1,k)的坐标可以知道,反比例函数的解析式就是题目中的k都是一致的2由点A(1,k)或点B(1,k)的坐标还可以知道,A、B关于原点O对称,以AB为直径的圆的圆心就是O3根据直径所对的圆周角是直角,当Q落在O上是,ABQ是以AB为直径的直角三角形满分解答(1)因为反比例函数的图象过点A(1,k),所以反比例函数的解析式是当k2时,反比例函数的解析式是(2)在反比例函数中,如果y随x增大而增大,那么k0当k0时,抛物线的开口向下,在对称轴左侧,y

13、随x增大而增大抛物线yk(x2x1)的对称轴是直线 所以当k0且时,反比例函数与二次函数都是y随x增大而增大(3)抛物线的顶点Q的坐标是,A、B关于原点O中心对称,当OQOAOB时,ABQ是以AB为直径的直角三角形由OQ2OA2,得解得(如图2),(如图3)图2 图3考点伸展如图4,已知经过原点O的两条直线AB与CD分别与双曲线(k0)交于A、B和C、D,那么AB与CD互相平分,所以四边形ACBD是平行四边形问平行四边形ABCD能否成为矩形?能否成为正方形?如图5,当A、C关于直线yx对称时,AB与CD互相平分且相等,四边形ABCD是矩形因为A、C可以无限接近坐标系但是不能落在坐标轴上,所以O

14、A与OC无法垂直,因此四边形ABCD不能成为正方形图4 图5例6浙江省中考第23题设直线l1:yk1xb1与l2:yk2xb2,若l1l2,垂足为H,则称直线l1与l2是点H的直角线(1)已知直线;和点C(0,2),则直线_和_是点C的直角线(填序号即可);(2)如图,在平面直角坐标系中,直角梯形OABC的顶点A(3,0)、B(2,7)、C(0,7),P为线段OC上一点,设过B、P两点的直线为l1,过A、P两点的直线为l2,若l1与l2是点P的直角线,求直线l1与l2的解析式 图1答案(1)直线和是点C的直角线(2)当APB90时,BCPPOA那么,即解得OP6或OP1如图2,当OP6时,l1

15、:, l2:y2x6如图3,当OP1时,l1:y3x1, l2:图2 图3例7 北京市中考第24题在平面直角坐标系xOy中,抛物线与x轴的交点分别为原点O和点A,点B(2,n)在这条抛物线上(1)求点B的坐标;(2)点P在线段OA上,从点O出发向点A运动,过点P作x轴的垂线,与直线OB交于点E,延长PE到点D,使得EDPE,以PD为斜边,在PD右侧作等腰直角三角形PCD(当点P运动时,点C、D也随之运动)当等腰直角三角形PCD的顶点C落在此抛物线上时,求OP的长;若点P从点O出发向点A作匀速运动,速度为每秒1个单位,同时线段OA上另一个点Q从点A出发向点O作匀速运动,速度为每秒2个单位(当点Q

16、到达点O时停止运动,点P也停止运动)过Q作x轴的垂线,与直线AB交于点F,延长QF到点M,使得FMQF,以QM为斜边,在QM的左侧作等腰直角三角形QMN(当点Q运动时,点M、N也随之运动)若点P运动到t秒时,两个等腰直角三角形分别有一条边恰好落在同一条直线上,求此刻t的值图1思路点拨1这个题目最大的障碍,莫过于无图了2把图形中的始终不变的等量线段罗列出来,用含有t的式子表示这些线段的长3点C的坐标始终可以表示为(3t,2t),代入抛物线的解析式就可以计算此刻OP的长4当两个等腰直角三角形有边共线时,会产生新的等腰直角三角形,列关于t的方程就可以求解了满分解答(1) 因为抛物线经过原点,所以 解

17、得,(舍去)因此所以点B的坐标为(2,4)(2) 如图4,设OP的长为t,那么PE2t,EC2t,点C的坐标为(3t, 2t)当点C落在抛物线上时,解得如图1,当两条斜边PD与QM在同一条直线上时,点P、Q重合此时3t10解得如图2,当两条直角边PC与MN在同一条直线上,PQN是等腰直角三角形,PQPE此时解得如图3,当两条直角边DC与QN在同一条直线上,PQC是等腰直角三角形,PQPD此时解得 图1 图2 图3考点伸展在本题情境下,如果以PD为直径的圆E与以QM为直径的圆F相切,求t的值如图5,当P、Q重合时,两圆内切,如图6,当两圆外切时, 图4 图5 图6例8 嘉兴市中考第24题如图1,

18、已知A、B是线段MN上的两点,以A为中心顺时针旋转点M,以B为中心逆时针旋转点N,使M、N两点重合成一点C,构成ABC,设(1)求x的取值范围;(2)若ABC为直角三角形,求x的值;(3)探究:ABC的最大面积? 图1思路点拨1根据三角形的两边之和大于第三边,两边之差小于第三边列关于x的不等式组,可以求得x的取值范围2分类讨论直角三角形ABC,根据勾股定理列方程,根据根的情况确定直角三角形的存在性3把ABC的面积S的问题,转化为S2的问题AB边上的高CD要根据位置关系分类讨论,分CD在三角形内部和外部两种情况满分解答(1)在ABC中,所以 解得(2)若AC为斜边,则,即,此方程无实根若AB为斜

19、边,则,解得,满足若BC为斜边,则,解得,满足因此当或时,ABC是直角三角形(3)在ABC中,作于D,设,ABC的面积为S,则如图2,若点D在线段AB上,则移项,得两边平方,得整理,得两边平方,得整理,得所以()当时(满足),取最大值,从而S取最大值 图2 图3如图3,若点D在线段MA上,则同理可得,()易知此时综合得,ABC的最大面积为考点伸展第(3)题解无理方程比较烦琐,迂回一下可以避免烦琐的运算:设,例如在图2中,由列方程整理,得所以因此【强化训练】1.(宜宾24)如图,抛物线与轴交于A(-2,0)、B(4,0)两点,与轴交于点C,顶点为P.(1)求抛物线的解析式;(2)动点M、N从点O

20、同时出发,都以每秒1个单位长度的速度分别在线段OB、OC上向点B、C方向运动,过点M作轴的垂线交BC于点F,交抛物线于点H.当四边形OMHN为矩形时,求点H的坐标;是否存在这样的点F,使PFB为直角三角形?若存在,求出点F的坐标;若不存在,说明理由。2.(连云港27)如图,已知一条直线过点(0,4),且与抛物线交于A、B两点,其中点A的横坐标是2。(1)求这条直线的函数关系式及点B的坐标;(2)在轴上是否存在点C,使得ABC是直角三角形?若存在,求出点C的坐标;若不存在,说明理由;(3)过线段AB上一点P,作PM/轴,交抛物线于点M,点M在第一象限,点N(0,1),当点M的横坐标为何值时,MN+3NP的长度最大?最大值是多少?18

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁