《2009年高考数学试题分类汇编概率doc--高中数学 .doc》由会员分享,可在线阅读,更多相关《2009年高考数学试题分类汇编概率doc--高中数学 .doc(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 永久免费组卷搜题网2009年高考数学试题分类汇编概率1、(湖北卷理) 3、投掷两颗骰子,得到其向上的点数分别为m和n,则复数(m+ni)(n-mi)为实数的概率为A、 B、C、 D、3【答案】C2、(江苏卷)5.现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为 . 【解析】 考查等可能事件的概率知识。w.w.w.k.s.5.u.c.o.m 所求概率为0.2。3、(安徽卷理)(10)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相
2、互平行但不重合的概率等于高.考.资.源.网(A) (B) (C) (D)ABCDEF解析 如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,共有种不同取法,其中所得的两条直线相互平行但不重合有 w.w.w.k.s.5.u.c.o.m 共12对,所以所求概率为,选D4、(福建卷)8.已知某运动员每次投篮命中的概率都为40%。现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果。经随机模拟产生了20组随机数: 907
3、 966 191 925 271 932 812 458 569 683 431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为A0.35 B 0.25 C 0.20 D 0.158【答案】:B5、(广东卷)12已知离散型随机变量的分布列如右表若,则 , 【解析】由题知,解得,.6、(湖南卷) 13、一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数数位 。【答案】:407、(上海)7某学校要从5名男生和2名女生中选出2人作为上海世博
4、会志愿者,若用随机变量表示选出的志愿者中女生的人数,则数学期望_(结果用最简分数表示).8、(重庆卷)6锅中煮有芝麻馅汤圆6个,花生馅汤圆5个,豆沙馅汤圆4个,这三种汤圆的外部特征完全相同。从中任意舀取4个汤圆,则每种汤圆都至少取到1个的概率为( C )A B C D w.w.w.k.s.5.u.c.o.m 9、(重庆卷)17(本小题满分13分,()问7分,()问6分)某单位为绿化环境,移栽了甲、乙两种大树各2株设甲、乙两种大树移栽的成活率分别为和,且各株大树是否成活互不影响求移栽的4株大树中:()两种大树各成活1株的概率;()成活的株数的分布列与期望w.w.(17)(本小题13分)解:设表示
5、甲种大树成活k株,k0,1,2表示乙种大树成活l株,l0,1,2则,独立. 由独立重复试验中事件发生的概率公式有 , . 据此算得 , , . , , . () 所求概率为. () 解法一:的所有可能值为0,1,2,3,4,且 , , = , . .综上知有分布列01234P1/361/613/361/31/9从而,的期望为(株)解法二:分布列的求法同上令分别表示甲乙两种树成活的株数,则故有从而知10、(四川卷)18. (本小题满分12分)为振兴旅游业,四川省2009年面向国内发行总量为2000万张的熊猫优惠卡,向省外人士发行的是熊猫金卡(简称金卡),向省内人士发行的是熊猫银卡(简称银卡)。某
6、旅游公司组织了一个有36名游客的旅游团到四川名胜旅游,其中是省外游客,其余是省内游客。在省外游客中有持金卡,在省内游客中有持银卡。(I)在该团中随机采访3名游客,求恰有1人持金卡且持银卡者少于2人的概率;(II)在该团的省内游客中随机采访3名游客,设其中持银卡人数为随机变量,求的分布列及数学期望。(18)本小题主要考察相互独立事件、互斥事件、随机变量的分布列、数学期望等概率计算,考察运用概率只是解决实际问题的能力。 解:()由题意得,省外游客有27人,其中9人持金卡;省内游客有9人,其中6人持银卡。设事件为“采访该团3人中,恰有1人持金卡且持银卡者少于2人”, 事件为“采访该团3人中,1人持金
7、卡,0人持银卡”, 事件为“采访该团3人中,1人持金卡,1人持银卡”。 所以在该团中随机采访3人,恰有1人持金卡且持银卡者少于2人的概率是。6分()的可能取值为0,1,2,3 , , 所以的分布列为0123 所以, 12分 11、(天津卷)(18)(本小题满分12分)在10件产品中,有3件一等品,4件二等品,3件三等品。从这10件产品中任取3件,求:(I) 取出的3件产品中一等品件数X的分布列和数学期望;w.w.w.k.s.5.u.c.o.m (II) 取出的3件产品中一等品件数多于二等品件数的概率。w.w.w.k.s.5.u.c.o.m 本小题主要考查古典概型及计算公式、离散型随机变量的分布
8、列和数学期望、互斥事件等基础知识,考查运用概率知识解决实际问题的能力。满分12分。()解:由于从10件产品中任取3件的结果为,从10件产品中任取3件,其中恰有k件一等品的结果数为,那么从10件产品中任取3件,其中恰有k件一等品的概率为P(X=k)= ,k=0,1,2,3.所以随机变量X的分布列是X0123PX的数学期望EX=()解:设“取出的3件产品中一等品件数多于二等品件数”为事件A,“恰好取出1件一等品和2件三等品”为事件A1“恰好取出2件一等品“为事件A2,”恰好取出3件一等品”为事件A3由于事件A1,A2,A3彼此互斥,且A=A1A2A3而P(A2)=P(X=2)= ,P(A3)=P(
9、X=3)= ,所以取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A1)+P(A2)+P(A3)= +=12、(浙江卷) 2009042319(本题满分14分)在这个自然数中,任取个数 (I)求这个数中恰有个是偶数的概率; (II)设为这个数中两数相邻的组数(例如:若取出的数为,则有两组相邻的数和,此时的值是)求随机变量的分布列及其数学期望解析:(I)记“这3个数恰有一个是偶数”为事件A,则;w.w.w.k.s.5.u.c.o.m (II)随机变量的取值为的分布列为012P所以的数学期望为 w.w.w.k.s.5.u.c.o.m 13、(辽宁卷)(19)(本小题满分12分)某人向
10、一目射击4次,每次击中目标的概率为。该目标分为3个不同的部分,第一、二、三部分面积之比为1:3:6。击中目标时,击中任何一部分的概率与其面积成正比。()设X表示目标被击中的次数,求X的分布列;()若目标被击中2次,A表示事件“第一部分至少被击中1次或第二部分被击中2次”,求P(A)w.w.w.k.s.5.u.c.o.m (19)解:()依题意X的分列为 6分()设A1表示事件“第一次击中目标时,击中第i部分”,i=1,2. B1表示事件“第二次击中目标时,击中第i部分”,i=1,2.依题意知P(A1)=P(B1)=0.1,P(A2)=P(B2)=0.3,,所求的概率为 12分14、(全国1)1
11、9(本小题满分12分)(注意:在试题卷上作答无效) 甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束,假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立,已知前2局中,甲、乙各胜1局。 (I)求甲获得这次比赛胜利的概率; (II)设表示从第3局开始到比赛结束所进行的局数,求得分布列及数学期望。分析:本题较常规,比08年的概率统计题要容易。需提醒的是:认真审题是前提,部分考生由于考虑了前两局的概率而导致失分,这是很可惜的,主要原因在于没读懂题。另外,还要注意表述,这也是考生较薄弱的环节。15、(山东卷) (19)(本小题满分12分) 在某校组织的
12、一次篮球定点投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分;如果前两次得分之和超过3分即停止投篮,否则投第三次,某同学在A处的命中率q为0.25,在B处的命中率为q,该同学选择先在A处投一球,以后都在B处投,用表示该同学投篮训练结束后所得的总分,其分布列为 0 2 3 4 5 w.w.w.k.s.5.u.c.o.m p 0.03 P1 P2 P3 P4 (1) 求q的值;w.w.w.k.s.5.u.c.o.m (2) 求随机变量的数学期望E;(3) 试比较该同学选择都在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小。解:(1)设该同学在A处投中为
13、事件A,在B处投中为事件B,则事件A,B相互独立,且P(A)=0.25, P(B)= q,.根据分布列知: =0时=0.03,所以,q=0.8.(2)当=2时, P1= w.w.w.k.s.5.u.c.o.m =0.75 q( )2=1.5 q( )=0.24当=3时, P2 =0.01,当=4时, P3=0.48,当=5时, P4=0.24所以随机变量的分布列为 0 2 3 4 5 p 0.03 0.24 0.01 0.48 0.24 随机变量的数学期望(3)该同学选择都在B处投篮得分超过3分的概率为;该同学选择(1)中方式投篮得分超过3分的概率为0.48+0.24=0.72.由此看来该同学
14、选择都在B处投篮得分超过3分的概率大.【命题立意】:本题主要考查了互斥事件的概率,相互独立事件的概率和数学期望,以及运用概率知识解决问题的能力.16、(全国卷2)20(本小题满分12分)某车间甲组有10名工人,其中有4名女工人;乙组有5名工人,其中有3名女工人,现采用分层抽样方法(层内采用不放回简单随机抽样)从甲、乙两组中共抽取3名工人进行技术考核。(I)求从甲、乙两组各抽取的人数; (II)求从甲组抽取的工人中恰有1名女工人的概率;(III)记表示抽取的3名工人中男工人数,求的分布列及数学期望。w.w.w.k.s.5.u.c.o.m 分析:(I)这一问较简单,关键是把握题意,理解分层抽样的原
15、理即可。另外要注意此分层抽样与性别无关。(II)在第一问的基础上,这一问处理起来也并不困难。 从甲组抽取的工人中恰有1名女工人的概率(III)的可能取值为0,1,2,3,分布列及期望略。评析:本题较常规,比08年的概率统计题要容易。在计算时,采用分类的方法,用直接法也可,但较繁琐,考生应增强灵活变通的能力。(江西卷)18(本小题满分12分)某公司拟资助三位大学生自主创业,现聘请两位专家,独立地对每位大学生的创业方案进行评审假设评审结果为“支持”或“不支持”的概率都是.若某人获得两个“支持”,则给予10万元的创业资助;若只获得一个“支持”,则给予5万元的资助;若未获得“支持”,则不予资助,令表示
16、该公司的资助总额 (1) 写出的分布列; (2) 求数学期望w.w.w.k.s.5.u.c.o.m 解:(1)的所有取值为 (2). 17、(湖南卷)17.(本小题满分12分)为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的.、,现在3名工人独立地从中任选一个项目参与建设。w.w.w.k.s.5.u.c.o.m (I)求他们选择的项目所属类别互不相同的概率;(II)记为3人中选择的项目属于基础设施工程、民生工程和产业建设工程的人数,求 的分布列及数学期望。解:记第1名工人选择的项目属于基础设施工程、民生工程和产业建设
17、工程分别为事件 ,,i=1,2,3.由题意知相互独立,相互独立,相互独立,,(i,j,k=1,2,3,且i,j,k互不相同)相互独立,且P()=,P()=,P()=(1) 他们选择的项目所属类别互不相同的概率P=3!P()=6P()P()P()=6=(2) 解法1 设3名工人中选择的项目属于民生工程的人数为,由己已知,-B(3,),且=3。所以P(=0)=P(=3)=, P(=1)=P(=2)= = w.w.w.k.s.5.u.c.o.m P(=2)=P(=1)=P(=3)=P(=0)= = 故的分布是0123P的数学期望E=0+1+2+3=2解法2 第i名工人选择的项目属于基础工程或产业工程
18、分别为事件,i=1,2,3 ,由此已知,D,相互独立,且P()-(,)= P()+P()=+=所以-,既, w.w.w.k.s.5.u.c.o.m 故的分布列是12318、(福建卷)16.(13分)从集合的所有非空子集中,等可能地取出一个。(1) 记性质r:集合中的所有元素之和为10,求所取出的非空子集满足性质r的概率;(2) 记所取出的非空子集的元素个数为,求的分布列和数学期望E 16、解:(1)记”所取出的非空子集满足性质r”为事件A基本事件总数n=31事件A包含的基本事件是1,4,5、2,3,5、1,2,3,4事件A包含的基本事件数m=3所以(II)依题意,的所有可能取值为1,2,3,4,5又, , , 故的分布列为: 12 3 4 5 P 从而E+2+3+4+5 永久免费组卷搜题网