《18.1 勾股定理 课课练(人教新课标八年级下) (1)doc--初中数学 .doc》由会员分享,可在线阅读,更多相关《18.1 勾股定理 课课练(人教新课标八年级下) (1)doc--初中数学 .doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 永久免费在线组卷 课件教案下载 无需注册和点数数学:18.1勾股定理课时练(人教新课标八年级下)第2题图第一课时18.1勾股定理1. 在直角三角形ABC中,斜边AB=1,则AB的值是( )A.2 B.4 C.6 D.82. 如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”他们仅仅少走了 步路(假设2步为1米),却踩伤了花草 3. 直角三角形两直角边长分别为5和12,则它斜边上的高为_4. 如图所示,一根旗杆于离地面12处断裂,犹如装有铰链那样倒向地面,旗杆顶落于离旗杆地步16,旗杆在断裂之前高多少?5. (2008年株洲市)如图,如下图,今年的冰雪灾害中
2、,一棵大树在离地面3米处折断,树的顶端落在离树杆底部4米处,那么这棵树折断之前的高度是 米. 第5题图6. 飞机在空中水平飞行,某一时刻刚好飞到一个男孩子头顶正上方4000米处,过了20秒,飞机距离这个男孩头顶5000米,求飞机每小时飞行多少千米?第7题图7. 如图所示,无盖玻璃容器,高18,底面周长为60,在外侧距下底1的点C处有一蜘蛛,与蜘蛛相对的容器的上口外侧距开口1的F处有一苍蝇,试求急于扑货苍蝇充饥的蜘蛛,所走的最短路线的长度.8. 一个零件的形状如图所示,已知AC=3,AB=4,BD=12第8题图求CD的长.9. 如图所示,在四边形ABCD 中,A=60,B=D=90,BC=2,C
3、D=3,第9题图求AB的长.10. 如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家.他要完成这件事情所走的最短路程是多少?11如图,某会展中心在会展期间准备将高5m,长13m,宽2m的楼道上铺地毯,已知地毯 5m13m第11题图平方米18元,请你帮助计算一下,铺完这个楼道至少需要多少元钱? 12. 甲、乙两位探险者到沙漠进行探险,没有了水,需要寻找水源为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为15千米早晨8:00甲先出发,他以6千米/时的速度向东行走,1小时后乙出发,他以5千米/时的速度向北行进,上午
4、10:00,甲、乙二人相距多远?还能保持联系吗?第一课时答案:1.A,提示:根据勾股定理得,所以AB=1+1=2;2.4,提示:由勾股定理可得斜边的长为5,而3+4-5=2,所以他们少走了4步.3. ,提示:设斜边的高为,根据勾股定理求斜边为 ,再利用面积法得,;4. 解:依题意,AB=16,AC=12,在直角三角形ABC中,由勾股定理,所以BC=20,20+12=32(),故旗杆在断裂之前有32高.5.8 6. 解:如图,由题意得,AC=4000米,C=90,AB=5000米,由勾股定理得BC=(米),所以飞机飞行的速度为(千米/小时)7. 解:将曲线沿AB展开,如图所示,过点C作CEAB于
5、E.在R,EF=18-1-1=16(),CE=,由勾股定理,得CF=8. 解:在直角三角形ABC中,根据勾股定理,得在直角三角形CBD中,根据勾股定理,得CD2=BC2+BD2=25+122=169,所以CD=13.9. 解:延长BC、AD交于点E.(如图所示)B=90,A=60,E=30又CD=3,CE=6,BE=8,设AB=,则AE=2,由勾股定理。得ABDPNAM第10题图10. 如图,作出A点关于MN的对称点A,连接AB交MN于点P,则AB就是最短路线. 在RtADB中,由勾股定理求得AB=17km11.解:根据勾股定理求得水平长为,地毯的总长 为12+5=17(m),地毯的面积为17
6、2=34(,铺完这个楼道至少需要花为:3418=612(元)12. OAB解:如图,甲从上午8:00到上午10:00一共走了2小时,走了12千米,即OA=12乙从上午9:00到上午10:00一共走了1小时,走了5千米,即OB=5在RtOAB中,AB2=122十52169,AB=13, 因此,上午10:00时,甲、乙两人相距13千米1513, 甲、乙两人还能保持联系第二课时18.2勾股定理的逆定理一、 选择题1.下列各组数据中,不能作为直角三角形三边长的是( )A.9,12,15 B. C.0.2,0.3,0.4 D.40,41,92.满足下列条件的三角形中,不是直角三角形的是( )A.三个内角
7、比为121 B.三边之比为12 C.三边之比为2 D. 三个内角比为1233.已知三角形两边长为2和6,要使这个三角形为直角三角形,则第三边的长为( )A. B. C. D.以上都不对4. 五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )A B C D二、填空题5. ABC的三边分别是7、24、25,则三角形的最大内角的度数是 .6.三边为9、12、15的三角形,其面积为 .7.已知三角形ABC的三边长为满足,则此三角形为 三角形.8.在三角形ABC中,AB=12,AC=5,BC=13,则BC边上的高为AD= .三、解答题9. 如图,已知四边形
8、ABCD中,B=90,AB=3,BC=4,CD=12,AD=13,第9题图求四边形ABCD的面积. FEACBD第10题图10. 如图,E、F分别是正方形ABCD中BC和CD边上的点,且AB=4,CE=BC,F为CD的中点,连接AF、AE,问AEF是什么三角形?请说明理由.11. 如图,AB为一棵大树,在树上距地面10m的D处有两只猴子,它们同时发现地面上的BACD.第11题图C处有一筐水果,一只猴子从D处上爬到树顶A处,利用拉在A处的滑绳AC,滑到C处,另一只猴子从D处滑到地面B,再由B跑到C,已知两猴子所经路程都是15m,求树高AB.12. 观察下列勾股数:第一组:3=211, 4=21(
9、1+1), 5=21(1+1)+1;第二组:5=221, 12=22(2+1), 13=22(2+1)+1;第三组:7=231, 24=23(3+1), 25=23(3+1)+1;第三组:9=241, 40=24(4+1), 41=24(4+1)+1;观察以上各组勾股数的组成特点,你能求出第七组的各应是多少吗?第组呢?18.2勾股定理的逆定理答案:一、1.C;2.C;3.C,提示:当已经给出的两边分别为直角边时,第三边为斜边=当6为斜边时,第三边为直角边=;4. C;二、5.90提示:根据勾股定理逆定理得三角形是直角三角形,所以最大的内角为90.6.54,提示:先根基勾股定理逆定理得三角形是直
10、角三角形,面积为7.直角,提示:;8.,提示:先根据勾股定理逆定理判断三角形是直角三角形,再利用面积法求得;三、9. 解:连接AC,在RtABC中,AC2=AB2BC2=3242=25, AC=5.在ACD中, AC2CD2=25122=169,而 AB2=132=169, AC2CD2=AB2, ACD=90故S四边形ABCD=SABCSACD=ABBCACCD=34512=630=36.10. 解:由勾股定理得AE2=25,EF2=5,AF2=20,AE2= EF2 +AF2,AEF是直角三角形11. 设AD=x米,则AB为(10+x)米,AC为(15-x)米,BC为5米,(x+10)2+52=(15-x)2,解得x=2,10+x=12(米)12. 解:第七组,第组, 永久免费在线组卷 课件教案下载 无需注册和点数