小学数学典型应用题解法例题总结.docx

上传人:飞**** 文档编号:41586966 上传时间:2022-09-13 格式:DOCX 页数:49 大小:66.66KB
返回 下载 相关 举报
小学数学典型应用题解法例题总结.docx_第1页
第1页 / 共49页
小学数学典型应用题解法例题总结.docx_第2页
第2页 / 共49页
点击查看更多>>
资源描述

《小学数学典型应用题解法例题总结.docx》由会员分享,可在线阅读,更多相关《小学数学典型应用题解法例题总结.docx(49页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、1 归一问题 【含义】 在解题时,先求出一份是多少(即单一量),然后以单一量为标准,求出所要求的数量。这类应用题叫做归一问题。【数量关系】 总量份数1份数量 1份数量所占份数所求几份的数量 另一总量(总量份数)所求份数【解题思路和方法】 先求出单一量,以单一量为标准,求出所要求的数量。例1 买5支铅笔要0.6元钱,买同样的铅笔16支,需要多少钱? 解(1)买1支铅笔多少钱? 0.650.12(元) (2)买16支铅笔需要多少钱?0.12161.92(元) 列成综合算式 0.65160.12161.92(元) 答:需要1.92元。例2 3台拖拉机3天耕地90公顷,照这样计算,5台拖拉机6 天耕地

2、多少公顷?解(1)1台拖拉机1天耕地多少公顷? 903310(公顷) (2)5台拖拉机6天耕地多少公顷? 1056300(公顷) 列成综合算式 9033561030300(公顷) 答:5台拖拉机6 天耕地300公顷。例3 5辆汽车4次可以运送100吨钢材,如果用同样的7辆汽车运送105吨钢材,需要运几次?解 (1)1辆汽车1次能运多少吨钢材? 100545(吨) (2)7辆汽车1次能运多少吨钢材? 5735(吨) (3)105吨钢材7辆汽车需要运几次? 105353(次) 列成综合算式 105(100547)3(次) 答:需要运3次。 2 归总问题【含义】 解题时,常常先找出“总数量”,然后再

3、根据其它条件算出所求的问题,叫归总问题。所谓“总数量”是指货物的总价、几小时(几天)的总工作量、几公亩地上的总产量、几小时行的总路程等。【数量关系】 1份数量份数总量 总量1份数量份数 总量另一份数另一每份数量【解题思路和方法】 先求出总数量,再根据题意得出所求的数量。例1 服装厂原来做一套衣服用布3.2米,改进裁剪方法后,每套衣服用布2.8米。原来做791套衣服的布,现在可以做多少套? 解 (1)这批布总共有多少米? 3.27912531.2(米) (2)现在可以做多少套? 2531.22.8904(套) 列成综合算式 3.27912.8904(套) 答:现在可以做904套。例2 小华每天读

4、24页书,12天读完了红岩一书。小明每天读36页书,几天可以读完红岩? 解 (1)红岩这本书总共多少页? 2412288(页) (2)小明几天可以读完红岩? 288368(天) 列成综合算式 2412368(天) 答:小明8天可以读完红岩。例3 食堂运来一批蔬菜,原计划每天吃50千克,30天慢慢消费完这批蔬菜。后来根据大家的意见,每天比原计划多吃10千克,这批蔬菜可以吃多少天? 解 (1)这批蔬菜共有多少千克? 50301500(千克) (2)这批蔬菜可以吃多少天? 1500(5010)25(天) 列成综合算式 5030(5010)15006025(天) 答:这批蔬菜可以吃25天。 3 和差问

5、题【含义】 已知两个数量的和与差,求这两个数量各是多少,这类应用题叫和差问题。【数量关系】 大数(和差) 2 小数(和差) 2【解题思路和方法】 简单的题目可以直接套用公式;复杂的题目变通后再用公式。例1 甲乙两班共有学生98人,甲班比乙班多6人,求两班各有多少人? 解 甲班人数(986)252(人) 乙班人数(986)246(人) 答:甲班有52人,乙班有46人。例2 长方形的长和宽之和为18厘米,长比宽多2厘米,求长方形的面积。 解 长(182)210(厘米) 宽(182)28(厘米) 长方形的面积 10880(平方厘米) 答:长方形的面积为80平方厘米。例3 有甲乙丙三袋化肥,甲乙两袋共

6、重32千克,乙丙两袋共重30千克,甲丙两袋共重22千克,求三袋化肥各重多少千克。 解 甲乙两袋、乙丙两袋都含有乙,从中可以看出甲比丙多(3230)2千克,且甲是大数,丙是小数。由此可知甲袋化肥重量(222)212(千克) 丙袋化肥重量(222)210(千克) 乙袋化肥重量321220(千克) 答:甲袋化肥重12千克,乙袋化肥重20千克,丙袋化肥重10千克。例4 甲乙两车原来共装苹果97筐,从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐,两车原来各装苹果多少筐? 解 “从甲车取下14筐放到乙车上,结果甲车比乙车还多3筐”,这说明甲车是大数,乙车是小数,甲与乙的差是(1423),甲与乙的和是9

7、7,因此 甲车筐数(971423)264(筐) 乙车筐数976433(筐) 答:甲车原来装苹果64筐,乙车原来装苹果33筐。 4 和倍问题【含义】 已知两个数的和及大数是小数的几倍(或小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做和倍问题。【数量关系】 总和 (几倍1)较小的数 总和 较小的数 较大的数 较小的数 几倍 较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里有杏树和桃树共248棵,桃树的棵数是杏树的3倍,求杏树、桃树各多少棵? 解 (1)杏树有多少棵? 248(31)62(棵) (2)桃树有多少棵? 623186(棵) 答:杏树

8、有62棵,桃树有186棵。例2 东西两个仓库共存粮480吨,东库存粮数是西库存粮数的1.4倍,求两库各存粮多少吨? 解 (1)西库存粮数480(1.41)200(吨) (2)东库存粮数480200280(吨) 答:东库存粮280吨,西库存粮200吨。例3 甲站原有车52辆,乙站原有车32辆,若每天从甲站开往乙站28辆,从乙站开往甲站24辆,几天后乙站车辆数是甲站的2倍? 解 每天从甲站开往乙站28辆,从乙站开往甲站24辆,相当于每天从甲站开往乙站(2824)辆。把几天以后甲站的车辆数当作1倍量,这时乙站的车辆数就是2倍量,两站的车辆总数(5232)就相当于(21)倍,那么,几天以后甲站的车辆数

9、减少为 (5232)(21)28(辆) 所求天数为 (5228)(2824)6(天) 答:6天以后乙站车辆数是甲站的2倍。例4 甲乙丙三数之和是170,乙比甲的2倍少4,丙比甲的3倍多6,求三数各是多少? 解 乙丙两数都与甲数有直接关系,因此把甲数作为1倍量。 因为乙比甲的2倍少4,所以给乙加上4,乙数就变成甲数的2倍; 又因为丙比甲的3倍多6,所以丙数减去6就变为甲数的3倍; 这时(17046)就相当于(123)倍。那么, 甲数(17046)(123)28 乙数282452 丙数283690 答:甲数是28,乙数是52,丙数是90。 5 差倍问题【含义】 已知两个数的差及大数是小数的几倍(或

10、小数是大数的几分之几),要求这两个数各是多少,这类应用题叫做差倍问题。【数量关系】 两个数的差(几倍1)较小的数 较小的数几倍较大的数【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 果园里桃树的棵数是杏树的3倍,而且桃树比杏树多124棵。求杏树、桃树各多少棵? 解 (1)杏树有多少棵? 124(31)62(棵) (2)桃树有多少棵? 623186(棵) 答:果园里杏树是62棵,桃树是186棵。例2 爸爸比儿子大27岁,今年,爸爸的年龄是儿子年龄的4倍,求父子二人今年各是多少岁? 解 (1)儿子年龄27(41)9(岁) (2)爸爸年龄9436(岁) 答:父子二人今年的

11、年龄分别是36岁和9岁。例3 商场改革经营管理办法后,本月盈利比上月盈利的2倍还多12万元,又知本月盈利比上月盈利多30万元,求这两个月盈利各是多少万元? 解 如果把上月盈利作为1倍量,则(3012)万元就相当于上月盈利的(21)倍,因此 上月盈利(3012)(21)18(万元) 本月盈利183048(万元) 答:上月盈利是18万元,本月盈利是48万元。例4 粮库有94吨小麦和138吨玉米,如果每天运出小麦和玉米各是9吨,问几天后剩下的玉米是小麦的3倍? 解 由于每天运出的小麦和玉米的数量相等,所以剩下的数量差等于原来的数量差(13894)。把几天后剩下的小麦看作1倍量,则几天后剩下的玉米就是

12、3倍量,那么,(13894)就相当于(31)倍,因此 剩下的小麦数量(13894)(31)22(吨) 运出的小麦数量942272(吨) 运粮的天数7298(天) 答:8天以后剩下的玉米是小麦的3倍。6 倍比问题 【含义】 有两个已知的同类量,其中一个量是另一个量的若干倍,解题时先求出这个倍数,再用倍比的方法算出要求的数,这类应用题叫做倍比问题。【数量关系】 总量一个数量倍数 另一个数量倍数另一总量【解题思路和方法】 先求出倍数,再用倍比关系求出要求的数。例1 100千克油菜籽可以榨油40千克,现在有油菜籽3700千克,可以榨油多少?解 (1)3700千克是100千克的多少倍? 37001003

13、7(倍)(2)可以榨油多少千克? 40371480(千克)列成综合算式 40(3700100)1480(千克) 答:可以榨油1480千克。例2 今年植树节这天,某小学300名师生共植树400棵,照这样计算,全县48000名师生共植树多少棵?解 (1)48000名是300名的多少倍? 48000300160(倍)(2)共植树多少棵? 40016064000(棵)列成综合算式 400(48000300)64000(棵) 答:全县48000名师生共植树64000棵。例3 凤翔县今年苹果大丰收,田家庄一户人家4亩果园收入11111元,照这样计算,全乡800亩果园共收入多少元?全县16000亩果园共收入

14、多少元?解 (1)800亩是4亩的几倍? 8004200(倍)(2)800亩收入多少元? 111112002222200(元)(3)16000亩是800亩的几倍?1600080020(倍)(4)16000亩收入多少元? 22222002044444000(元) 答:全乡800亩果园共收入2222200元,全县16000亩果园共收入44444000元。 7 相遇问题【含义】 两个运动的物体同时由两地出发相向而行,在途中相遇。这类应用题叫做相遇问题。【数量关系】 相遇时间总路程(甲速乙速) 总路程(甲速乙速)相遇时间【解题思路和方法】 简单的题目可直接利用公式,复杂的题目变通后再利用公式。例1 南

15、京到上海的水路长392千米,同时从两港各开出一艘轮船相对而行,从南京开出的船每小时行28千米,从上海开出的船每小时行21千米,经过几小时两船相遇?解 392(2821)8(小时) 答:经过8小时两船相遇。例2 小李和小刘在周长为400米的环形跑道上跑步,小李每秒钟跑5米,小刘每秒钟跑3米,他们从同一地点同时出发,反向而跑,那么,二人从出发到第二次相遇需多长时间?解 “第二次相遇”可以理解为二人跑了两圈。因此总路程为4002 相遇时间(4002)(53)100(秒) 答:二人从出发到第二次相遇需100秒时间。例3 甲乙二人同时从两地骑自行车相向而行,甲每小时行15千米,乙每小时行13千米,两人在

16、距中点3千米处相遇,求两地的距离。解 “两人在距中点3千米处相遇”是正确理解本题题意的关键。从题中可知甲骑得快,乙骑得慢,甲过了中点3千米,乙距中点3千米,就是说甲比乙多走的路程是(32)千米,因此,相遇时间(32)(1513)3(小时)两地距离(1513)384(千米)答:两地距离是84千米。 8 追及问题【含义】 两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。这类应用题就叫做追及问题。【数量关系】 追及时间追及路程(快速慢速) 追及路程(快速慢

17、速)追及时间【解题思路和方法】 简单的题目直接利用公式,复杂的题目变通后利用公式。例1 好马每天走120千米,劣马每天走75千米,劣马先走12天,好马几天能追上劣马?解 (1)劣马先走12天能走多少千米? 7512900(千米)(2)好马几天追上劣马? 900(12075)20(天)列成综合算式 7512(12075)9004520(天) 答:好马20天能追上劣马。例2 小明和小亮在200米环形跑道上跑步,小明跑一圈用40秒,他们从同一地点同时出发,同向而跑。小明第一次追上小亮时跑了500米,求小亮的速度是每秒多少米。解 小明第一次追上小亮时比小亮多跑一圈,即200米,此时小亮跑了(50020

18、0)米,要知小亮的速度,须知追及时间,即小明跑500米所用的时间。又知小明跑200米用40秒,则跑500米用40(500200)秒,所以小亮的速度是 (500200)40(500200)3001003(米) 答:小亮的速度是每秒3米。例3 我人民解放军追击一股逃窜的敌人,敌人在下午16点开始从甲地以每小时10千米的速度逃跑,解放军在晚上22点接到命令,以每小时30千米的速度开始从乙地追击。已知甲乙两地相距60千米,问解放军几个小时可以追上敌人?解 敌人逃跑时间与解放军追击时间的时差是(2216)小时,这段时间敌人逃跑的路程是10(226)千米,甲乙两地相距60千米。由此推知追及时间10(226

19、)60(3010)2202011(小时) 答:解放军在11小时后可以追上敌人。例4 一辆客车从甲站开往乙站,每小时行48千米;一辆货车同时从乙站开往甲站,每小时行40千米,两车在距两站中点16千米处相遇,求甲乙两站的距离。解 这道题可以由相遇问题转化为追及问题来解决。从题中可知客车落后于货车(162)千米,客车追上货车的时间就是前面所说的相遇时间,这个时间为 162(4840)4(小时)所以两站间的距离为 (4840)4352(千米)列成综合算式 (4840)162(4840)884352(千米) 答:甲乙两站的距离是352千米。例5 兄妹二人同时由家上学,哥哥每分钟走90米,妹妹每分钟走60

20、米。哥哥到校门口时发现忘记带课本,立即沿原路回家去取,行至离校180米处和妹妹相遇。问他们家离学校有多远?解 要求距离,速度已知,所以关键是求出相遇时间。从题中可知,在相同时间(从出发到相遇)内哥哥比妹妹多走(1802)米,这是因为哥哥比妹妹每分钟多走(9060)米,那么,二人从家出走到相遇所用时间为1802(9060)12(分钟)家离学校的距离为 9012180900(米) 答:家离学校有900米远。例6 孙亮打算上课前5分钟到学校,他以每小时4千米的速度从家步行去学校,当他走了1千米时,发现手表慢了10分钟,因此立即跑步前进,到学校恰好准时上课。后来算了一下,如果孙亮从家一开始就跑步,可比

21、原来步行早9分钟到学校。求孙亮跑步的速度。解 手表慢了10分钟,就等于晚出发10分钟,如果按原速走下去,就要迟到(105)分钟,后段路程跑步恰准时到学校,说明后段路程跑比走少用了(105)分钟。如果从家一开始就跑步,可比步行少9分钟,由此可知,行1千米,跑步比步行少用9(105)分钟。所以步行1千米所用时间为 19(105)0.25(小时)15(分钟)跑步1千米所用时间为 159(105)11(分钟)跑步速度为每小时 11160160115.5(千米) 答:孙亮跑步速度为每小时5.5千米。 9 植树问题【含义】 按相等的距离植树,在距离、棵距、棵数这三个量之间,已知其中的两个量,要求第三个量,

22、这类应用题叫做植树问题。【数量关系】 线形植树 棵数距离棵距1 环形植树 棵数距离棵距 方形植树 棵数距离棵距4 三角形植树 棵数距离棵距3 面积植树 棵数面积(棵距行距)【解题思路和方法】 先弄清楚植树问题的类型,然后可以利用公式。例1 一条河堤136米,每隔2米栽一棵垂柳,头尾都栽,一共要栽多少棵垂柳?解 1362168169(棵) 答:一共要栽69棵垂柳。例2 一个圆形池塘周长为400米,在岸边每隔4米栽一棵白杨树,一共能栽多少棵白杨树?解 4004100(棵) 答:一共能栽100棵白杨树。例3 一个正方形的运动场,每边长220米,每隔8米安装一个照明灯,一共可以安装多少个照明灯?解 2

23、204841104106(个) 答:一共可以安装106个照明灯。例4 给一个面积为96平方米的住宅铺设地板砖,所用地板砖的长和宽分别是60厘米和40厘米,问至少需要多少块地板砖?解 96(0.60.4)960.24400(块) 答:至少需要400块地板砖。例5 一座大桥长500米,给桥两边的电杆上安装路灯,若每隔50米有一个电杆,每个电杆上安装2盏路灯,一共可以安装多少盏路灯?解 (1)桥的一边有多少个电杆? 50050111(个)(2)桥的两边有多少个电杆? 11222(个)(3)大桥两边可安装多少盏路灯?22244(盏) 答:大桥两边一共可以安装44盏路灯。 10 年龄问题【含义】 这类问

24、题是根据题目的内容而得名,它的主要特点是两人的年龄差不变,但是,两人年龄之间的倍数关系随着年龄的增长在发生变化。【数量关系】年龄问题往往与和差、和倍、差倍问题有着密切联系,尤其与差倍问题的解题思路是一致的,要紧紧抓住“年龄差不变”这个特点。【解题思路和方法】 可以利用“差倍问题”的解题思路和方法。例1 爸爸今年35岁,亮亮今年5岁,今年爸爸的年龄是亮亮的几倍?明年呢?解 3557(倍) (35+1)(5+1)6(倍) 答:今年爸爸的年龄是亮亮的7倍,明年爸爸的年龄是亮亮的6倍。例2 母亲今年37岁,女儿今年7岁,几年后母亲的年龄是女儿的4倍?解 (1)母亲比女儿的年龄大多少岁? 37730(岁

25、)(2)几年后母亲的年龄是女儿的4倍?30(41)73(年)列成综合算式 (377)(41)73(年) 答:3年后母亲的年龄是女儿的4倍。例3 3年前父子的年龄和是49岁,今年父亲的年龄是儿子年龄的4倍,父子今年各多少岁?解 今年父子的年龄和应该比3年前增加(32)岁,今年二人的年龄和为 493255(岁)把今年儿子年龄作为1倍量,则今年父子年龄和相当于(41)倍,因此,今年儿子年龄为 55(41)11(岁)今年父亲年龄为 11444(岁) 答:今年父亲年龄是44岁,儿子年龄是11岁。例4 甲对乙说:“当我的岁数曾经是你现在的岁数时,你才4岁”。乙对甲说:“当我的岁数将来是你现在的岁数时,你将

26、61岁”。求甲乙现在的岁数各是多少?解这里涉及到三个年份:过去某一年、今年、将来某一年。列表分析:过去某一年今 年将来某一年 甲 岁岁 61岁 乙 4岁岁 岁 表中两个“”表示同一个数,两个“”表示同一个数。 因为两个人的年龄差总相等:461,也就是4,61成等差数列,所以,61应该比4大3个年龄差,因此二人年龄差为 (614)319(岁) 甲今年的岁数为 611942(岁) 乙今年的岁数为 421923(岁) 答:甲今年的岁数是42岁,乙今年的岁数是23岁。11 行船问题 【含义】 行船问题也就是与航行有关的问题。解答这类问题要弄清船速与水速,船速是船只本身航行的速度,也就是船只在静水中航行

27、的速度;水速是水流的速度,船只顺水航行的速度是船速与水速之和;船只逆水航行的速度是船速与水速之差。【数量关系】 (顺水速度逆水速度)2船速 (顺水速度逆水速度)2水速 顺水速船速2逆水速逆水速水速2 逆水速船速2顺水速顺水速水速2【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一只船顺水行320千米需用8小时,水流速度为每小时15千米,这只船逆水行这段路程需用几小时?解 由条件知,顺水速船速水速3208,而水速为每小时15千米,所以,船速为每小时 32081525(千米)船的逆水速为 251510(千米)船逆水行这段路程的时间为 3201032(小时) 答:这只船逆水行这段路程

28、需用32小时。例2 甲船逆水行360千米需18小时,返回原地需10小时;乙船逆水行同样一段距离需15小时,返回原地需多少时间?解由题意得 甲船速水速3601036甲船速水速3601820可见 (3620)相当于水速的2倍,所以, 水速为每小时(3620)28(千米)又因为, 乙船速水速36015,所以, 乙船速为 36015832(千米)乙船顺水速为 32840(千米)所以, 乙船顺水航行360千米需要 360409(小时) 答:乙船返回原地需要9小时。例3 一架飞机飞行在两个城市之间,飞机的速度是每小时576千米,风速为每小时24千米,飞机逆风飞行3小时到达,顺风飞回需要几小时?解 这道题可

29、以按照流水问题来解答。(1)两城相距多少千米? (57624)31656(千米)(2)顺风飞回需要多少小时? 1656(57624)2.76(小时)列成综合算式(57624)3(57624)2.76(小时) 答:飞机顺风飞回需要2.76小时。 12 列车问题【含义】 这是与列车行驶有关的一些问题,解答时要注意列车车身的长度。【数量关系】 火车过桥:过桥时间(车长桥长)车速 火车追及: 追及时间(甲车长乙车长距离)(甲车速乙车速) 火车相遇: 相遇时间(甲车长乙车长距离)(甲车速乙车速)【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 一座大桥长2400米,一列火车以每分钟900米

30、的速度通过大桥,从车头开上桥到车尾离开桥共需要3分钟。这列火车长多少米?解 火车3分钟所行的路程,就是桥长与火车车身长度的和。(1)火车3分钟行多少米? 90032700(米)(2)这列火车长多少米? 27002400300(米)列成综合算式 90032400300(米) 答:这列火车长300米。例2 一列长200米的火车以每秒8米的速度通过一座大桥,用了2分5秒钟时间,求大桥的长度是多少米?解 火车过桥所用的时间是2分5秒125秒,所走的路程是(8125)米,这段路程就是(200米桥长),所以,桥长为8125200800(米)答:大桥的长度是800米。例3 一列长225米的慢车以每秒17米的

31、速度行驶,一列长140米的快车以每秒22米的速度在后面追赶,求快车从追上到追过慢车需要多长时间?解 从追上到追过,快车比慢车要多行(225140)米,而快车比慢车每秒多行(2217)米,因此,所求的时间为(225140)(2217)73(秒) 答:需要73秒。例4 一列长150米的列车以每秒22米的速度行驶,有一个扳道工人以每秒3米的速度迎面走来,那么,火车从工人身旁驶过需要多少时间?解 如果把人看作一列长度为零的火车,原题就相当于火车相遇问题。150(223)6(秒) 答:火车从工人身旁驶过需要6秒钟。例5 一列火车穿越一条长2000米的隧道用了88秒,以同样的速度通过一条长1250米的大桥

32、用了58秒。求这列火车的车速和车身长度各是多少?解 车速和车长都没有变,但通过隧道和大桥所用的时间不同,是因为隧道比大桥长。可知火车在(8858)秒的时间内行驶了(20001250)米的路程,因此,火车的车速为每秒(20001250)(8858)25(米)进而可知,车长和桥长的和为(2558)米,因此,车长为25581250200(米) 答:这列火车的车速是每秒25米,车身长200米。 13 时钟问题【含义】 就是研究钟面上时针与分针关系的问题,如两针重合、两针垂直、两针成一线、两针夹角为60度等。时钟问题可与追及问题相类比。【数量关系】 分针的速度是时针的12倍,二者的速度差为11/12。

33、通常按追及问题来对待,也可以按差倍问题来计算。【解题思路和方法】 变通为“追及问题”后可以直接利用公式。例1 从时针指向4点开始,再经过多少分钟时针正好与分针重合?解 钟面的一周分为60格,分针每分钟走一格,每小时走60格;时针每小时走5格,每分钟走5/601/12格。每分钟分针比时针多走(11/12)11/12格。4点整,时针在前,分针在后,两针相距20格。所以分针追上时针的时间为 20(11/12)2(分钟) 答:再经过2分钟时针正好与分针重合。例2 四点和五点之间,时针和分针在什么时候成直角?解 钟面上有60格,它的1/4是15格,因而两针成直角的时候相差15格(包括分针在时针的前或后1

34、5格两种情况)。四点整的时候,分针在时针后(54)格,如果分针在时针后与它成直角,那么分针就要比时针多走 (5415)格,如果分针在时针前与它成直角,那么分针就要比时针多走(5415)格。再根据1分钟分针比时针多走(11/12)格就可以求出二针成直角的时间。(5415)(11/12)5(分钟)(5415)(11/12)38(分钟) 答:4点05分及4点38分时两针成直角。例3 六点与七点之间什么时候时针与分针重合?解 六点整的时候,分针在时针后(56)格,分针要与时针重合,就得追上时针。这实际上是一个追及问题。 (56)(11/12)36(分钟)答:6点36分的时候分针与时针重合。 14 盈亏问题【含义】 根据一定的人数,分配一定的物品,在两次分配中,一次有余(盈),一次不足(亏),或两次都有余,或两次都不足,求人数或物品数,这类应用题叫做盈亏问题。【数量关系】 一般地说,在两次分配中,如果一次盈,一次亏,则有: 参加分配总人数(盈亏)分配差 如果两次都盈或都亏,则有: 参加分配总人数(大盈小盈)分配差参加分配总人数(大亏小亏)分配差【解题思路和方法】 大多数情况可以直接利用数量关系的公式。例1 给幼儿园小朋友分苹果,若每人分3个就余11个;若每人分4个就少1个。问有多少小朋友?有多少个苹

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 小学资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁