《广州市高考数学模拟试题精选汇总:解析几何01 Word版含答案(7页).doc》由会员分享,可在线阅读,更多相关《广州市高考数学模拟试题精选汇总:解析几何01 Word版含答案(7页).doc(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-广州市高考数学模拟试题精选汇总:解析几何01 Word版含答案-第 - 7 - 页解析几何01一、选择题 若直线:与直线:平行 ,则的值为()A1B1或2C-2D1或-2 倾斜角为135,在轴上的截距为的直线方程是()AB CD 若抛物线y2=ax上恒有关于直线x+y-1=0对称的两点A,B,则a的取值范围是()A(,0)B(0,)C(0,)D 己知抛物线方程为(),焦点为,是坐标原点, 是抛物线上的一点,与轴正方向的夹角为60,若的面积为,则的值为()A2BC2或D2或 已知椭圆的离心率为.双曲线的渐近线与椭圆有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆的方程为()ABCD
2、已知双曲线的左右焦点分别为,在双曲线右支上存在一点满足且,那么双曲线的离心率是()ABCD 设F是抛物线的焦点,点A是抛物线与双曲线=1的一条渐近线的一个公共点,且轴,则双曲线的离心率为()A2BCD二、填空题 若与相交于A、B两点,且两圆在点A处的切线互相垂直,则线段AB的长度是_; 已知双曲线的左右焦点为,P为双曲线右支上的任意一点,若的最小值为8a,则双曲线的离心率的取值范围是_.已知抛物线的参数方程为(为参数),焦点为,准线为,为抛物线上一点,为垂足,如果直线的斜率为,那么_ . 三、解答题已知中心在坐标原点,焦点在轴上的椭圆过点,且它的离心率.()求椭圆的标准方程;()与圆相切的直线
3、交椭圆于两点,若椭圆上一点满足,求实数的取值范围.椭圆E:+=1(ab0)离心率为,且过P(,).(1)求椭圆E的方程;(2)已知直线l过点M(-,0),且与开口朝上,顶点在原点的抛物线C切于第二象限的一点N,直线l与椭圆E交于A,B两点,与y轴交与D点,若=,=,且+=,求抛物线C的标准方程.已知一条曲线C在y轴右边,C上每一点到点F(1,0)的距离减去它到y轴的距离的差都是1.()求曲线C的方程;()是否存在正数m,对于过点M(m,0)且与曲线C有两个交点A,B的任一直线,都有0?若存在,求出m的取值范围;若不存在,请说明理由.设点P是曲线C:上的动点,点P到点(0,1)的距离和它到焦点F
4、的距离之和的最小值为(1)求曲线C的方程(2)若点P的横坐标为1,过P作斜率为的直线交C与另一点Q,交x轴于点M,过点Q且与PQ垂直的直线与C交于另一点N,问是否存在实数k,使得直线MN与曲线C相切?若存在,求出k的值,若不存在,说明理由.答案一、选择题 【答案】A【解析】直线的方程为,若,则两直线不平行,所以,要使两直线平行,则有,由,解得或。当时,所以不满足条件,所以,选A. 【答案】D【解析】直线的斜率为,所以满足条件的直线方程为,即,选D. C A D 【答案】C因为且,所以,又,所以,即双曲线的离心率为,选C. 【答案】D解:由题意知,不妨取双曲线的渐近线为,由得.因为,所以,即,解
5、得,即,所以,即,所以离心率,选D.二、填空题 【答案】4解:由题知,且,又,所以有,所以. 【答案】8 解:消去参数得抛物线的方程为.焦点,准线方程为.由题意可设,则,所以.因为,所以,代入抛物线,得.,所以. 三、解答题解:() 设椭圆的标准方程为 由已知得: 解得 所以椭圆的标准方程为: () 因为直线:与圆相切 所以, 把代入并整理得: 7分 设,则有 因为, 所以, 又因为点在椭圆上, 所以, 因为 所以 所以 ,所以 的取值范围为 【解析】 解. (1) 点P(,)在椭圆上 (2)设的方程为直线与抛物线C切点为 解得, 代入椭圆方程并整理得: 则方程(1)的两个根, 由, ,解得
6、本题主要考查直线与抛物线的位置关系,抛物线的性质等基础知识,同时考查推理运算的能力. 解:(I)设P是直线C上任意一点,那么点P()满足: 化简得 (II)设过点M(m,0)的直线与曲线C的交点为A(),B() 设的方程为,由得,. 于是 又 又,于是不等式等价于 由式,不等式等价于 对任意实数t,的最小值为0,所以不等式对于一切t成立等价于 ,即 由此可知,存在正数m,对于过点M(,0)且与曲线C有A,B两个交点的任一直线,都有,且m的取值范围是 解:(1)依题意知,解得,所以曲线C的方程为 (2)由题意设直线PQ的方程为:,则点 由,得, 所以直线QN的方程为 由, 得 所以直线MN的斜率为 过点N的切线的斜率为 所以,解得 故存在实数k=使命题成立.