《广州市高考数学模拟试题精选汇总:立体几何03 Word版含答案(9页).doc》由会员分享,可在线阅读,更多相关《广州市高考数学模拟试题精选汇总:立体几何03 Word版含答案(9页).doc(9页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-广州市高考数学模拟试题精选汇总:立体几何03 Word版含答案-第 - 9 - 页立体几何03在如图所示的多面体中,EF平面AEB,AEEB,AD/EF,EF/BCBC=2AD=4,EF=3,AE=BE=2,G为BC的中点。(1)求证:AB/平面DEG;(2)求证:BDEG;(3)求二面角CDFE的正弦值。如图在四棱锥中,底面是边长为的正方形,侧面底面,且,设、分别为、的中点.() 求证: /平面;() 求证:面平面; () 求二面角的正切值.FEDCBAP如图,在四棱锥P-ABCD中,底面为直角梯ABCD,ADBC,BAD=90O,PA底面ABCD,且PA=AD=AB=2BC,M,N分别为
2、PC,PB的中点.(1)求证:PBDM;(2)求CD与平面ADMN所成角的正弦值;(3)在棱PD上是否存在点E,PEED=,使得二面角C-AN-E的平面角为60o.存在求出值.在四棱锥中,底面是直角梯形, ,平面平面.(1)求证:平面; (2)求平面和平面所成二面角(小于)的大小;(3)在棱上是否存在点使得平面?若存在,求的值;若不存在,请说明理由. 如图,在四棱锥中,底面是正方形,侧棱底面,是的中点,作交于点(1)证明:平面.(2)证明:平面.(3)求二面角的大小.在四棱锥PABCD中,底面ABCD是直角梯形,AB/CD,AB=PB=PC=BC=2CD,平面PBC平面ABCD.(1)求证:A
3、B平面PBC;(2)求平面ADP与平面BCP所成的锐二面角的大小;(3)在棱PB上是否存在点M使得CM/平面PAD?若存在,求的值;若不存在,请说明理由.参考答案 法一:()证明:为平行四边形 连结,为中点, 为中点在中/ 且平面,平面 ()证明:因为面面 平面面 为正方形,平面 所以平面 又,所以是等腰直角三角形, 且 即 ,且、面 面 又面 面面 () 【解】:设的中点为,连结, 则由()知面, ,面, 是二面角的平面角 中, 故所求二面角的正切值为 法二:如图,取的中点, 连结,. 侧面底面, 而分别为的中点, 又是正方形,故. 以为原点,直线为轴建立空间直线坐标系, 则有,. 为的中点
4、, ()证明:易知平面的法向量为而, 且, /平面 ()证明:, , ,从而,又, ,而, 平面平面 () 【解】:由()知平面的法向量为. 设平面的法向量为., 由可得,令,则, 故, 即二面角的余弦值为, 所以二面角的正切值为 解:(1)如图以A为原点建立空间直角坐标系 A(0,0,0),B(2,0,0), C(2,1,0),D(0,2,0) M(1,1),N(1,0,1), E(0,m,2-m),P(0,0,2) (2,0,-2),(1,-,1) =0 (2)=(-2,1,0)平面ADMN法向量=(x,y,z) =(0,2,0) =(1,0,1) =(1,0,-1) 设CD与平面ADMN
5、所成角,则 (3)设平面ACN法向量=(x,y,z) =(1,-2,-1) 平面AEN的法向量=(x,y,z) =(1,-1) 即m=PE:ED=(3-4):2不存在,为135钝角 ()证明:因为 , 所以 因为 平面平面,平面平面, 平面, 所以 平面 ()解:取的中点,连接. 因为, 所以 . 因为 平面平面,平面平面,平面, 所以 平面 如图,以为原点,所在的直线为轴,在平面内过垂直于的直 线为轴,所在的直线为轴建立空间直角坐标系.不妨设.由 直角梯形中可得, .所以 ,. 设平面的法向量. 因为 所以 即 令,则. 所以 取平面的一个法向量n. 所以 . 所以 平面和平面所成的二面角(
6、小于)的大小为. ()解:在棱上存在点使得平面,此时. 理由如下: 取的中点,连接,. 则 ,. 因为 , 所以 . 因为 , 所以 四边形是平行四边形. 所以 . 因为 , 所以 平面平面 因为 平面, 所以 平面 解:(1)证明:连接与交于,为正方形,为中点.为中点,又平面,平面/平面 (2)为中点,为正方形,又平面,平面 又是平面内的两条相交直线,即平面,又平面,所以解:(1)证明:因为,所以ABBC因为平面PBC平面ABCD,平面PBC平面ABCD=BC,AB平面ABCD,所以AB平面PBC.(2)如图,取BC的中点O,连接PO,因为PB=PC,所以POBC.因为PB=PC,所以POB
7、C,因为平面PBC平面ABCD,所以PO平面ABCD.以O为原点,OB所在的直线为x轴,在平面ABCD内过O垂直于BC的直线为y轴,OP所在直线为z轴建立空间直角坐标系Oxyz.不妨设BC=2.由AB=PB=PC=BC=2CD得,所以,设平面PAD的法向量为.因为,所以令,则.所以.取平面BCP的一个法向量,所以所以平面ADP与平面BCP所成的锐二面角的大小为(3)在棱PB上存在点M使得CM/平面PAD,此时.取AB的中点N,连接CM,CN,MN,则MN/PA,AN=AB.因为AB=2CD,所以AN=CD,因为AB/CD,所以四边形ANCD是平行四边形,所以CN/AD.因为MNCN=N,PAAD=A,所以平面MNC/平面PAD.因为CM平面MNC,所以CM/平面PAD.