二次函数的解析式的三种解法.ppt

上传人:小** 文档编号:3718262 上传时间:2020-10-18 格式:PPT 页数:10 大小:168.52KB
返回 下载 相关 举报
二次函数的解析式的三种解法.ppt_第1页
第1页 / 共10页
二次函数的解析式的三种解法.ppt_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《二次函数的解析式的三种解法.ppt》由会员分享,可在线阅读,更多相关《二次函数的解析式的三种解法.ppt(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、用待定系数法求二次函数的解析式,y,x,课前复习,例题选讲,课堂小结,课堂练习,课件制作: 临淄区敬仲一中 董玲,课前复习,思考,二次函数解析式有哪几种表达式?,一般式:y=ax2+bx+c,顶点式:y=a(x-h)2+k,交点式:y=a(x-x1)(x-x2),例题,封面,例题选讲,一般式: y=ax2+bx+c,两根式: y=a(x-x1)(x-x2),顶点式: y=a(x-h)2+k,解:,设所求的二次函数为y=ax2+bx+c,由条件得:,a-b+c=10 a+b+c=4 4a+2b+c=7,解方程得:,因此:所求二次函数是:,a=2, b=-3, c=5,y=2x2-3x+5,例1,

2、例题,封面,例题选讲,解:,设所求的二次函数为y=a(x1)2-3,由条件得:,点( 0,-5 )在抛物线上,a-3=-5, 得a=-2,故所求的抛物线解析式为 y=2(x1)2-3,即:y=2x2-4x5,一般式: y=ax2+bx+c,两根式: y=a(x-x1)(x-x2),顶点式: y=a(x-h)2+k,例2,例题,封面,例题选讲,解:,设所求的二次函数为y=a(x1)(x1),由条件得:,点M( 0,1 )在抛物线上,所以:a(0+1)(0-1)=1,得: a=-1,故所求的抛物线解析式为 y=- (x1)(x-1),即:y=x2+1,一般式: y=ax2+bx+c,两根式: y=

3、a(x-x1)(x-x2),顶点式: y=a(x-h)2+k,例题,例3,封面,例题选讲,有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m现把它的图形放在坐标系里 (如图所示),求抛物线的解析式,例4,设抛物线的解析式为y=ax2bxc,,解:,根据题意可知 抛物线经过(0,0),(20,16)和(40,0)三点,可得方程组,通过利用给定的条件 列出a、b、c的三元 一次方程组,求出a、 b、c的值,从而确定 函数的解析式 过程较繁杂,,评价,封面,练习,例题选讲,有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m现把它的图形放在坐标系里 (如图所示),求

4、抛物线的解析式,例4,设抛物线为y=a(x-20)216,解:,根据题意可知 点(0,0)在抛物线上,,通过利用条件中的顶点和过原点选用顶点式求解, 方法比较灵活,评价, 所求抛物线解析式为,封面,练习,例题选讲,有一个抛物线形的立交桥拱,这个桥拱的最大高度 为16m,跨度为40m现把它的图形放在坐标系里 (如图所示),求抛物线的解析式,例4,设抛物线为y=ax(x-40 ),解:,根据题意可知 点(20,16)在抛物线上,,选用两根式求解,方法灵活巧妙,过程也较简捷,评价,封面,练习,课堂练习,一个二次函数,当自变量x= -3时,函数值y=2 当自变量x= -1时,函数值y= -1,当自变量x=1时 ,函数值y= 3,求这个二次函数的解析式? 已知抛物线与X轴的两个交点的横坐标是、, 与Y轴交点的纵坐标是,求这个抛物线的解析式?,1、,2、,封面,小结,课堂小结,求二次函数解析式的一般方法:,已知图象上三点或三对的对应值, 通常选择一般式,已知图象的顶点坐标对称轴和最值) 通常选择顶点式,已知图象与x轴的两个交点的横x1、x2, 通常选择两根式,y,x,封面,确定二次函数的解析式时,应该根据条件的特点, 恰当地选用一种函数表达式,,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁