《二次函数,平行四边形存在性问题(3页).doc》由会员分享,可在线阅读,更多相关《二次函数,平行四边形存在性问题(3页).doc(3页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-二次函数,平行四边形存在性问题-第 3 页专题:二次函数中的平行四边形存在性问题类型一:已知三个定点,再找一个定点构成平行四边形(平面内有三个点满足)1.已知抛物线与轴的一个交点为A(-1,0),与y轴的正半轴交于点C直接写出抛物线的对称轴,及抛物线与轴的另一个交点B的坐标;当点C在以AB为直径的P上时,求抛物线的解析式;坐标平面内是否存在点,使得以点M和中抛物线上的三点A、B、C为顶点的四边形是平行四边形?若存在,请求出点的坐标;若不存在,请说明理由2、练习:已知抛物线()与轴相交于点,顶点为.直线分别与轴,轴相交于两点,并且与直线相交于点.(1)填空:试用含的代数式分别表示点与的坐标,则
2、; (2)如图,将沿轴翻折,若点的对应点恰好落在抛物线上,与轴交于点,连结,求的值和四边形的面积;(3)在抛物线()上是否存在一点,使得以为顶点的四边形是平行四边形?若存在,求出点的坐标;若不存在,试说明理由第(2)题xyBCODAMNNxyBCOAMNP1P2备用图类型:已知两个定点,再找两个点构成平行四边形确定两定点连接的线段为一边,则两动点连接的线段应和已知边平行且相等1已知,如图抛物线与y轴交于C点,与x轴交于A、B两点,A点在B点左侧。点B的坐标为(1,0),OC=30B (1)求抛物线的解析式; (2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值: (3)若点E
3、在x轴上,点P在抛物线上。是否存在以A、C、E、P为顶点且以AC为一边的平行四边形?若存在,求点P的坐标;若不存在,请说明理由2、练习 如图,抛物线:与x轴交于A、B(A在B左侧),顶点为C(1,2)。(1)求此抛物线的关系式;并直接写出点A、B的坐标;(2)求过A、B、C三点的圆的半径;(3)在抛物线上找点P,在y轴上找点E,使以A、B、P、E为顶点的四边形是平行四边形,求点P、E的坐标。两定点连接的线段没确定为平行四边形的边时,则这条线段可能为平行四边形的边或对角线1如图,抛物线与x轴交A、B两点(A点在B点左侧),直线与抛物线交于A、C两点,其中C点的横坐标为2(1)求A、B 两点的坐标
4、及直线AC的函数表达式;(2)P是线段AC上的一个动点,过P点作y轴的平行线交抛物线于E点,求线段PE长度的最大值;(3)点G抛物线上的动点,在x轴上是否存在点F,使A、C、F、G这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F点坐标;如果不存在,请说明理由2、练习:如图,抛物线y=x2+bx+c的顶点为D(-1,-4),与y轴交于点C(0,-3),与x轴交于A,B两点(点A在点B的左侧)。(1) 求抛物线的解析式;(2) 连接AC,CD,AD,试证明ACD为直角三角形;(3) 若点E在抛物线的对称轴上,抛物线上是否存在点F,使以A,B,E,F为顶点的的四边形为平行四边形
5、?若存在,求出所有满足条件的点F的坐标;若不存在,请说明理由。检测:1、如图,已知抛物线y=ax2+bx+c(a0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PDy轴,交AC于点D。(1)求该抛物线的函数关系式; (2)当ADP是直角三角形时,求点P的坐标;(3)在问题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由。备用图2、如图,已知抛物线经过A(-2,0),B(-3,3)及原点O,顶点为C。(1)求抛物线的解析式;(2)若点D在抛物线上,点E在抛物线的对称轴上,且A、O、D、E为顶点的四边形是平行四边形,求点D的坐标;(3)P是抛物线上的第一象限内的动点,过点P作PMx轴,垂足为M,是否存在点P,使得以P、M、A为顶点的三角形BOC相似?若存在,求出点P的坐标;若不存在,请说明理由。