一元一次方程-相遇追及问答.ppt

上传人:小** 文档编号:3705014 上传时间:2020-10-17 格式:PPT 页数:29 大小:859.52KB
返回 下载 相关 举报
一元一次方程-相遇追及问答.ppt_第1页
第1页 / 共29页
一元一次方程-相遇追及问答.ppt_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《一元一次方程-相遇追及问答.ppt》由会员分享,可在线阅读,更多相关《一元一次方程-相遇追及问答.ppt(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、,1.顺逆问题 2.相遇问题 3.追及问题,一、明确行程问题中三个量的关系,引例:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?,三个基本量关系是:速度时间=路程,解:设水路长为x千米,则公路长为(x+40)千米,等量关系:船行时间车行时间=3小时,答:水路长240千米,公路长为280千米,车行时间为 7小时,船行时间为10小时,依题意得:,x+40=280,x=240,解2 设汽车行驶时间为x小时,则轮船行

2、驶时间为 (x+3)小时。,等量关系:水路公路=40,依题意得:,40 x 24(x+3)= 40,x=7,7+3=10 407=280 24 10=240 答:汽车行驶时间为7小时,船行时间为10小时, 公路长为280米,水路长240米。,引例:从甲地到乙地,水路比公路近40千米,上午十时,一艘轮船从甲地驶往乙地,下午1时一辆汽车从甲地驶往乙地,结果同时到达终点。已知轮船的速度是每小时24千米,汽车的速度是每小时40千米,求甲、乙两地水路、公路的长,以及汽车和轮船行驶的时间?,顺逆问题,例题讲解:,例 汽船从甲地顺水开往乙地,所用时间比从乙地逆水 开往甲地少1.5小时。已知船在静水的速度为1

3、8千米/小时, 水流速度为2千米/小时,求甲、乙两地之间的距离?,分析:本题是行程问题,但涉及水流速度,必须要 掌握:顺水速度=船速+水速 逆水速度=船速水速,解:(直接设元) 设甲、乙两地的距离为x 千米,等量关系:逆水所用时间顺水所用时间=1.5,依题意得:,x=120 答:甲、乙两地的距离为120千米。,解2 (间接设元) 设汽船逆水航行从乙地到甲地需x 小时,,则汽船顺水航行的距离是(18+2)(x 1.5)千米, 逆水航行的距离是(18 2)x千米。,等量关系:汽船顺水航行的距离=汽船逆水航行的距离。,依题意得:,(18+2)(x 1.5)= (18 2)x,x=7.5,(18 2)

4、 7.5=120 答:甲、乙两地距离为120千米。,例1 汽船从甲地顺水开往乙地,所用时间比从乙地逆水 开往甲地少1.5小时。已知船在静水的速度为 18千米/小时,水流速度为2千米/小时, 求甲、乙两地之间的距离?,例 一艘船从甲码头到乙码头顺流行驶,用了2小时;从乙码头返回甲码头逆流行驶,用了2.5小时。已知水流的速度是3千米/时,求船在静水中的速度。,解:设船在静水中的平均速度为x千米/时,则顺流速度为(x+3)千米/时,逆流速度为(x-3)千米/时。,根据往返路程相等,列得,2(x+3)=2.5(x-3),去括号,得,2x+6=2.5x-7.5,移项及合并,得,0.5x=13.5,X=2

5、7,答:船在静水中的平均速度为27千米/时。,练习: 1、一架飞机飞行两城之间,顺风时需要5小时30分钟, 逆风时需要6小时,已知风速为每小时24公里, 求两城之间的距离?,等量关系:顺风时飞机本身速度=逆风时飞机本身速度。,答:两城之间的距离为3168公里,注:飞行问题也是行程问题。同水流问题一样,飞行问 题的等量关系有:顺风飞行速度=飞机本身速度+风速 逆风飞行速度=飞机本身速度风速,依题意得:,x=3168,解:设两城之间距离为x 公里,则顺风速为 公 里/小时,逆风速为 公里/小时,还有其他 的解法吗?,相遇问题-反向而行,相等关系:A车路程 B车路程 =相距路程,相等关系:总量=各分

6、量之和,想一想回答下面的问题:,1、A、B两车分别从相距S千米的甲、乙两地同时出发,相向而行,两车会相遇吗?,导入,2、如果两车相遇,则相遇时两车所走的路程与A、B两地的距离有什么关系?,相遇问题,例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?,A车路程B车路程=相距路程,线段图分析:,若设B车行了x小时后与A车相遇,显然A车相遇时也行了x小时。则A车路程为 千米;B车路程 为 千米。根据相等关系可列出方程。,相等关系:总量=各分量之和,例1、 A、B两车分别停靠在相距240千米

7、的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (1)若两车同时相向而行,请问B车行了多长时间后与A车相遇?,A车路程B车路程=相距路程,解:设B车行了x小时后与A车相遇,根据题意列方程得 50 x+30 x=240 解得 x=3 答:设B车行了3小时后与A车相遇。,例1、 A、B两车分别停靠在相距240千米的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?,线段图分析:,80千米,第一种情况: A车路程B车路程相距80千米= 相距路程,相等关系:总量=各分量之和,例1、 A、B两车分别停靠在相距240千米

8、的甲、乙两地,甲车每小时行50千米,乙车每小时行30千米。 (2)若两车同时相向而行,请问B车行了多长时间后两车相距80千米?,线段图分析:,80千米,第二种情况: A车路程B车路程-相距80千米= 相距路程,1、 A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。 (1)若两车相向而行,请问B车行了多长时间后与A车相遇?,相等关系:A车路程A车同走的路程+ B车同走的路程=相距路程,线段图分析:,1、 A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再

9、出发。 (2)若两车相向而行,请问B车行了多长时间后两车相距10千米?,线段图分析:,练习书本107页第10题,追及问题-同向而行,想一想回答下面的问题:,3、如果两车同向而行,B车先出发a小时,在什么情况下两车能相遇?为什么?,A车速度乙车速度,4、如果A车能追上B车,你能画出线段图吗?,甲,乙,A(B),相等关系: B车先行路程 B车后行路程 =A车路程,家,学 校,追 及 地,400米,80 x米,180 x米,例2、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小

10、明,并且在途中追上他。 (1)爸爸追上小明用了多少时间? (2)追上小明时,距离学校还有多远?,相等关系: 小明先行路程 小明后行路程 =爸爸的路程,家,学 校,追 及 地,400米,80 x米,180 x米,例2、小明每天早上要在7:50之前赶到距离家1000米的学校上学,一天,小明以80米/分的速度出发,5分后,小明的爸爸发现他忘了带语文书,于是,爸爸立即以180米/分的速度去追小明,并且在途中追上他。 (1)爸爸追上小明用了多少时间? (2)追上小明时,距离学校还有多远?,(1)解:设爸爸要 x分钟才追上小明,依题意得: 180 x = 80 x + 580 解得 x=4 答:爸爸追上小

11、明用了4分钟。,2、 A、B两车分别停靠在相距115千米的甲、乙两地,A车每小时行50千米,B车每小时行30千米,A车出发1.5小时后B车再出发。 若两车同向而行(B车在A车前面),请问B车行了多长时间后被A车追上?,线段图分析:,甲,A,B,501.5,50 x,30 x,乙,115,相等关系: A车先行路程 + A车后行路程 - B车路程 = 115,3、小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑5米,叔叔每秒跑7.5米。 (1)若两人同时同地反向出发,多长时间两人首次相遇? (2)若两人同时同地同向出发,多长时间两人首次相遇?,(1)反向,相等关系: 小王路程 + 叔叔路程

12、= 400,叔叔,小王,3、小王、叔叔在400米长的环形跑道上练习跑步,小王每秒跑4米,叔叔每秒跑7.5米。 (1)若两人同时同地反向出发,多长时间两人首次相遇? (2)若两人同时同地同向出发,多长时间两人首次相遇?,(2)同向,相等关系: 小王路程 + 400 = 叔叔路程,叔叔,小王,考虑车长问题,书本99页第11题。 练习: 铁桥路桥长1000m,现在一列火车匀速通过桥,火车从车头上桥到车尾离桥用了60s,整列火车完全在桥上的时间为40s,求火车的速度及长度。(20、200),归纳:,在列一元一次方程解行程问题时,我们常画出线段图来分析数量关系。用线段图来分析数量关系能够帮助我们更好的理解题意,找到适合题意的等量关系式,设出适合的未知数,列出方程。正确地作出线段图分析数量关系,能使我们分析问题和解问题的能力得到提高。,用一元一次方程分析和解决实际问题的基本过程如下:,实际问题,数学问题 (一元一次方程),实际问题的答案,数学问题的解 (x=a),列方程,检验,解方程,小结:这节课我们复习了行程问题中的相遇和追及问题,归纳如下:,相等关系:A车路程+B车路程=相距路程,相等关系: B车路程=A车先路程+A车后行路程 或B车路程=A车路程+相距路程,

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁