《向量和向量的基本运算(7页).doc》由会员分享,可在线阅读,更多相关《向量和向量的基本运算(7页).doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、-llll 向量和向量的基本运算-第 6 页l 向量及向量的基本运算一、教学目标:1理解向量的有关概念,掌握向量的加法与减法、实数与向量的积、向量的数量积及其运算法则,理解向量共线的充要条件. 2会用向量的代数运算法则、三角形法则、平行四边形法则解决有关问题不断培养并深化用数形结合的思想方法解题的自觉意识.二、教学重点:向量的概念和向量的加法和减法法则三、教学过程:(一)主要知识:1)向量的有关概念向量:既有大小又有方向的量。向量一般用来表示,或用有向线段的起点与终点的大写字母表示,如:。向量的大小即向量的模(长度),记作|。零向量:长度为0的向量,记为,其方向是任意的,与任意向量平行。单位向
2、量:模为1个单位长度的向量。平行向量(共线向量):方向相同或相反的非零向量。任意一组平行向量都可以移到同一直线上。相反向量:我们把与向量长度相等,方向相反的向量叫做的相反向量。记作-。相等向量:长度相等且方向相同的向量。相等向量经过平移后总可以重合,记为。2)向量加法求两个向量和的运算叫做向量的加法。设,则+=。向量加法有“三角形法则”与“平行四边形法则”。 说明:(1); (2)向量加法满足交换律与结合律;3)向量的减法 相反向量:与长度相等、方向相反的向量,叫做的相反向量。记作,零向量的相反向量仍是零向量。关于相反向量有: (i)=; (ii) +()=()+=;(iii)若、是互为相反向
3、量,则=,=,+=。向量减法:向量加上的相反向量叫做与的差,记作:。求两个向量差的运算,叫做向量的减法。的作图法:可以表示为从的终点指向的终点的向量(、有共同起点)。注:(1)用平行四边形法则时,两个已知向量是要共始点的,和向量是始点与已知向量的始点重合的那条对角线,而差向量是另一条对角线,方向是从减向量指向被减向量。 (2) 三角形法则的特点是“首尾相接”,由第一个向量的起点指向最后一个向量的终点的有向线段就表示这些向量的和;差向量是从减向量的终点指向被减向量的终点。4)实数与向量的积实数与向量的积是一个向量,记作,它的长度与方向规定如下:()当时,的方向与的方向相同;当时,的方向与的方向相
4、反;当时,方向是任意的。数乘向量满足交换律、结合律与分配律。实数与向量的积的运算律:设、为实数,则 ()=() (+) =+ (+)=+5)两个向量共线定理向量与非零向量共线有且只有一个实数,使得=。6)平面向量的基本定理如果是一个平面内的两个不共线向量,那么对这一平面内的任一向量,有且只有一对实数使:其中不共线的向量叫做表示这一平面内所有向量的一组基底。7)特别注意:(1)向量的加法与减法是互逆运算。(2)相等向量与平行向量有区别,向量平行是向量相等的必要条件。(3)向量平行与直线平行有区别,直线平行不包括共线(即重合),而向量平行则包括共线(重合)的情况。(4)向量的坐标与表示该向量的有向
5、线条的始点、终点的具体位置无关,只与其相对位置有关。(二)主要方法:1充分理解向量的概念和向量的表示; 2数形结合的方法的应用;3用基底向量表示任一向量唯一性;4向量的特例和单位向量,要考虑周全 (三)例题分析:例1、判断下列各命题是否正确(1)零向量没有方向 (2)若(3)单位向量都相等 (4) 向量就是有向线段(5)两相等向量若共起点,则终点也相同 (6)若,则;(7)若,则 (8)若四边形ABCD是平行四边形,则(9)已知A(3,7),B(5,2),将按向量=(1,2)平移后得到的向量的坐标为(3,3)(10)的充要条件是且;解:(1) 不正确,零向量方向任意, (2) 不正确,说明模相
6、等,还有方向 (3) 不正确,单位向量的模为1,方向很多 (4) 不正确,有向线段是向量的一种表示形式 (5)正确, (6)正确,向量相等有传递性 (7)不正确,因若,则不共线的向量也有,。(8) 不正确, 如图 (9)不正确,=(1,2),平移公式是,将A(3,7),B(5,2)分别代入可求得,故=(6,4)(4,9)=(2,5)。(10)不正确,当,且方向相反时,即使,也不能得到; 点评正确理解向量的有关概念例2、如图平行四边形ABCD的对角线OD,AB相交于点C,线段BC上有一点M满足BC=3BM,线段CD上有一点N满足CD3CN,设解:点评根据向量的几何加减法则,能对图形中的向量进行互
7、相表示练习: ABC中,用.如图解:例3、一条渔船距对岸4km,以2km/h的速度向垂直于对岸的方向划去,到达对岸时,船的实际航程为8km ,求河水的流速解:设表示垂直于对岸的速度,表示水流速度,则为实际速度航行时间为4km2km/h=2h在ABC中所以, 河水的流速为 点评求合力或分力,合速或分速问题用向量解是一种常见问题,要善于运用平行四边形和三角形法则例4、在ABC中,D、E分别为AB、AC的中点,用向量的方法证明:DE平行且等于0.5BC分析:要证明DE平行且等于0.5BC,只要解:如图又D,E为中点即所以DE平行且等于0.5BC点评几何问题可以转化为向量问题的证明,往往会变的简单明了
8、练习: 已知G是ABC的重心,求证:证明:以向量为邻边作平行四边形GBEC,则,又由G为ABC的重心知,从而,。例5、设是不共线的向量,已知向量,若A,B,D三点共线,求k的值分析:使解:, 使得点评共线或平行问题,用向量或坐标平行的充要条件解决例3 经过重心的直线与分别交于点,A设,求的值。解:设,则,由共线,得存在实数,使得,即从而,消去得:(四)巩固练习:1已知梯形中,分别是、的中点,若,用,表示、解:(1)(2)(3)2 (1)设两个非零向量、不共线,如果, 求证:三点共线.(2)设、是两个不共线的向量,已知,若三点共线,求的值.(1)证明:因为所以又因为得即又因为公共点所以三点共线;(2)解:因为共线所以设所以 即;四、小结:1)向量的有关概念: 向量零向量单位向量平行向量(共线向量)相等向量2)向量加法减法:3)实数与向量的积4)两个向量共线定理5)平面向量的基本定理, 基底五、作业: