高中数学必修一知识点大全.docx

上传人:叶*** 文档编号:36081472 上传时间:2022-08-25 格式:DOCX 页数:10 大小:22.25KB
返回 下载 相关 举报
高中数学必修一知识点大全.docx_第1页
第1页 / 共10页
高中数学必修一知识点大全.docx_第2页
第2页 / 共10页
点击查看更多>>
资源描述

《高中数学必修一知识点大全.docx》由会员分享,可在线阅读,更多相关《高中数学必修一知识点大全.docx(10页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、高中数学必修一知识点大全中学数学必修一学问点 篇1 一、集合有关概念 1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。 2、集合的中元素的三个特性: 1.元素的确定性; 2.元素的互异性; 3.元素的无序性 说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。 (2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。 (3)集合中的元素是同等的,没有先后依次,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列依次是否一样。 (4)集合元素的三个特性使集合本身具有

2、了确定性和整体性。 3、集合的表示:如我校的篮球队员,太平洋大西洋印度洋北冰洋 1.用拉丁字母表示集合:A=我校的篮球队员B=12345 2.集合的表示方法:列举法与描述法。 留意啊:常用数集及其记法: 非负整数集(即自然数集)记作:N 正整数集N-或N+整数集Z有理数集Q实数集R 关于“属于”的概念 集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A记作aA,相反,a不属于集合A记作a:A 列举法:把集合中的元素一一列举出来,然后用一个大括号括上。 描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。用确定的条件表示某些对象是否属于这个集合的方法。

3、语言描述法:例:不是直角三角形的三角形 数学式子描述法:例:不等式x-3>2的解集是x?R|x-3>2或x|x-3>2 4、集合的分类: 1.有限集含有有限个元素的集合 2.无限集含有无限个元素的集合 3.空集不含任何元素的集合例:x|x2=-5 二、集合间的基本关系 1.“包含”关系子集 留意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。 反之:集合A不包含于集合B或集合B不包含集合A记作AB或BA 2.“相等”关系(55,且55,则5=5) 实例:设A=x|x2-1=0B=-11“元素相同” 结论:对于两个集合A与B,假如集合A的任何一个元素都是集合B的元素

4、,同时集合B的任何一个元素都是集合A的元素,我们就说集合A等于集合B,即:A=B 任何一个集合是它本身的子集。A?A 真子集:假如A?B且A?B那就说集合A是集合B的真子集,记作AB(或BA) 假如A?BB?C那么A?C 假如A?B同时B?A那么A=B 3.不含任何元素的集合叫做空集,记为 规定:空集是任何集合的子集,空集是任何非空集合的真子集。 三、集合的运算 1.交集的定义:一般地,由全部属于A且属于B的元素所组成的集合叫做AB的交集. 记作AB(读作”A交B”),即AB=x|xA,且xB. 2、并集的定义:一般地,由全部属于集合A或属于集合B的元素所组成的集合,叫做AB的并集。记作:AB

5、(读作”A并B”),即AB=x|xA,或xB. 3、交集与并集的性质:AA=AA=AB=BA,AA=A A=AAB=BA. 4、全集与补集 (1)补集:设S是一个集合,A是S的一个子集(即),由S中全部不属于A的元素组成的集合,叫做S中子集A的补集(或余集) 记作:CSA即CSA=x?x?S且x?A (2)全集:假如集合S含有我们所要探讨的各个集合的全部元素,这个集合就可以看作一个全集。通常用U来表示。 (3)性质:CU(CUA)=A(CUA)A=(CUA)A=U 中学数学必修一学问点 篇2 二次函数 I.定义与定义表达式 一般地,自变量x和因变量y之间存在如下关系:y=ax2+bx+c (a

6、,b,c为常数,a0,且a确定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下,IaI还可以确定开口大小,IaI越大开口就越小,IaI越小开口就越大.) 则称y为x的二次函数。 二次函数表达式的右边通常为二次三项式。 II.二次函数的三种表达式 一般式:y=ax2+bx+c(a,b,c为常数,a0) 顶点式:y=a(x-h)2+k抛物线的顶点P(h,k) 交点式:y=a(x-x?)(x-x?)仅限于与x轴有交点A(x?,0)和B(x?,0)的抛物线 注:在3种形式的相互转化中,有如下关系: h=-b/2ak=(4ac-b2)/4ax?,x?=(-bb2-4ac)/2a

7、 III.二次函数的图像 在平面直角坐标系中作出二次函数y=x2的图像,可以看出,二次函数的图像是一条抛物线。 IV.抛物线的性质 1.抛物线是轴对称图形。对称轴为直线x=-b/2a。对称轴与抛物线的交点为抛物线的顶点P。 特殊地,当b=0时,抛物线的对称轴是y轴(即直线x=0) 2.抛物线有一个顶点P,坐标为 P(-b/2a,(4ac-b2)/4a) 当-b/2a=0时,P在y轴上;当=b2-4ac=0时,P在x轴上。 3.二次项系数a确定抛物线的开口方向和大小。 当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。 |a|越大,则抛物线的开口越小。 高一数学必修1函数的学问

8、点篇四:一次函数 一、定义与定义式: 自变量x和因变量y有如下关系: y=kx+b 则此时称y是x的一次函数。 特殊地,当b=0时,y是x的正比例函数。 即:y=kx(k为常数,k0) 二、一次函数的性质: 1.y的改变值与对应的x的改变值成正比例,比值为k即:y=kx+b(k为随意不为零的实数b取任何实数) 2.当x=0时,b为函数在y轴上的截距。 三、一次函数的图像及性质: 1.作法与图形:通过如下3个步骤 (1)列表; (2)描点; (3)连线,可以作出一次函数的图像一条直线。因此,作一次函数的图像只需知道2点,并连成直线即可。(通常找函数图像与x轴和y轴的交点) 2.性质:(1)在一次

9、函数上的随意一点P(x,y),都满意等式:y=kx+b。(2)一次函数与y轴交点的坐标总是(0,b),与x轴总是交于(-b/k,0)正比例函数的图像总是过原点。 3.k,b与函数图像所在象限: 当k>0时,直线必通过一、三象限,y随x的增大而增大; 当k<0时,直线必通过二、四象限,y随x的增大而减小。 当b>0时,直线必通过一、二象限; 当b=0时,直线通过原点 当b<0时,直线必通过三、四象限。 特殊地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图像。 这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四象限。 中学数学必修

10、一学问点 篇3 反比例函数 形如y=k/x(k为常数且k0)的函数,叫做反比例函数。 自变量x的取值范围是不等于0的一切实数。 反比例函数图像性质: 反比例函数的图像为双曲线。 由于反比例函数属于奇函数,有f(-x)=-f(x),图像关于原点对称。 另外,从反比例函数的解析式可以得出,在反比例函数的图像上任取一点,向两个坐标轴作垂线,这点、两个垂足及原点所围成的矩形面积是定值,为k。 上面给出了k分别为正和负(2和-2)时的函数图像。 当K>0时,反比例函数图像经过一,三象限,是减函数 当K<0时,反比例函数图像经过二,四象限,是增函数 反比例函数图像只能无限趋向于坐标轴,无法和坐

11、标轴相交。 学问点: 1.过反比例函数图象上随意一点作两坐标轴的垂线段,这两条垂线段与坐标轴围成的矩形的面积为|k|。 2.对于双曲线y=k/x,若在分母上加减随意一个实数(即y=k/(xm)m为常数),就相当于将双曲线图象向左或右平移一个单位。(加一个数时向左平移,减一个数时向右平移) 中学数学必修一学问点 篇4 空间几何体表面积体积公式: 1、圆柱体:表面积:2Rr+2Rh体积:R2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体:表面积:R2+R(h2+R2)的体积:R2h/3(r为圆锥体低圆半径,h为其高, 3、a-边长,S=6a2,V=a3 4、长方体a-长,b-宽,c-高S=

12、2(ab+ac+bc)V=abc 5、棱柱S-h-高V=Sh 6、棱锥S-h-高V=Sh/3 7、S1和S2-上、下h-高V=hS1+S2+(S1S2)1/2/3 8、S1-上底面积,S2-下底面积,S0-中h-高,V=h(S1+S2+4S0)/6 9、圆柱r-底半径,h-高,C底面周长S底底面积,S侧,S表表面积C=2rS底=r2,S侧=Ch,S表=Ch+2S底,V=S底h=r2h 10、空心圆柱R-外圆半径,r-内圆半径h-高V=h(R2-r2) 11、r-底半径h-高V=r2h/3 12、r-上底半径,R-下底半径,h-高V=h(R2+Rr+r2)/313、球r-半径d-直径V=4/3r

13、3=d3/6 14、球缺h-球缺高,r-球半径,a-球缺底半径V=h(3a2+h2)/6=h2(3r-h)/3 15、球台r1和r2-球台上、下底半径h-高V=h3(r12+r22)+h2/6 16、圆环体R-环体半径D-环体直径r-环体截面半径d-环体截面直径V=22Rr2=2Dd2/4 17、桶状体D-桶腹直径d-桶底直径h-桶高V=h(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心)V=h(2D2+Dd+3d2/4)/15(母线是抛物线形) 中学数学必修一学问点 篇5 (1)直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特殊地,当直线与x轴平行或重合时,我们

14、规定它的倾斜角为0度。因此,倾斜角的取值范围是0<180 (2)直线的斜率 定义:倾斜角不是90的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 过两点的直线的斜率公式: 留意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90; (2)k与P1、P2的依次无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标干脆求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 (3)直线方程 点斜式:直线斜率k,且过点 留意:当直线的斜率为0时,k=0,直线的方程是y=y1。当直线的斜率为90时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 斜截式:,直线斜率为k,直线在y轴上的截距为b 两点式:()直线两点, 截矩式:其中直线与轴交于点,与轴交于点,即与轴、轴的截距分别为。 一般式:(A,B不全为0) 一般式:(A,B不全为0) 留意:1各式的适用范围 2特别的方程如:平行于x轴的直线:(b为常数);平行于y轴的直线:(a为常数); (4)直线系方程:即具有某一共同性质的直线 10 / 10

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁