圆练习题及答案(6页).doc

上传人:1595****071 文档编号:36076037 上传时间:2022-08-25 格式:DOC 页数:5 大小:351.50KB
返回 下载 相关 举报
圆练习题及答案(6页).doc_第1页
第1页 / 共5页
圆练习题及答案(6页).doc_第2页
第2页 / 共5页
点击查看更多>>
资源描述

《圆练习题及答案(6页).doc》由会员分享,可在线阅读,更多相关《圆练习题及答案(6页).doc(5页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、-圆练习题及答案-第 5 页圆练习题及答案一、选择题1、下列结论正确的是( ) A弦是直径 B弧是半圆 C半圆是弧 D过圆心的线段是直径2、下列说法正确的是( ) A一个点可以确定一条直线 B两个点可以确定两条直线 C三个点可以确定一个圆 D不在同一直线上的三点确定一个圆3、圆是轴对称图形,它的对称轴有 ( )A一条 B 两条 C一条 D无数条4、若P的半径为13,圆心P的坐标为(5, 12 ), 则平面直角坐标系的原点O与P的位置关系是( ) A在P内 B在P内上 C在P外 D无法确定5、已知O的直径为10,圆心O到弦的距离OM的长为3,则弦AB的长是( )A、4 B、6 C、7 D、86、

2、直角三角形两直角边长分别为和l,那么它的外接圆的直径是( ) A.1 B.2 C7、已知O的半径长6cm,P为线段O A的中点,若点P在O上,则OA的长是( ) A等于6cm B等于12cm C小于6cm D 大于12cm8、正方形ABCD的边长是l,对角线AC,BD相交于点O,若以O为圆心作圆要使点A在O外,则所选取的半径可能是( ) A. B. C. D.2二、填空题1、圆上各点到圆心的距离都等于 , 到圆心距离等于半径的点都在 .2、若圆的一条弦长为该圆的半径等于12cm,其弦心距等于 cm.3、在RtABC中,C=900, CDAB, AC=2, BC=3,若以C为圆心,以2为半径作C

3、,则点 A在C ,点B 在C ,点D在C .4、三角形的外心是三角形的三条 的交点。5、如图, AB是O的直径,弦CDAB于点M, AM = 2cm,BM = 8cm. 则CD的长为 cm.6、已知O的半径为5cm,过O内一点P的最短的弦长为8cm,则OP= .7、一个点到定圆上最近点的距离为4,最远点的距离为9,则此圆的半径是 。 8、已知:如图,有一圆弧形拱桥,拱的跨度AB=16cm,拱高CD=4cm,那么拱形的半径是 cm.三、解答题1、已知,如图,OA,OB为0的半径,C,D分别为OA , OB的中点求证:(l) A=B; (2) AE=BE.2、如图,在平面直角坐标系中,点A的坐标是

4、(10,0),点B的坐标为(8,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形求点C的坐标3、已知:如图,PAC=300,在射线AC上顺次截取AD=3cm,DB=10cm,以DB为直径作O交射线AP于 E、F两点,求圆心O到AP的距离及EF的长4、某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面(1)请你补全这个输水管道的圆形截面;(2)若这个输水管道有水部分的水面宽AB16cm,水面最深地方的高度为4cm,求这个圆形截面的半径B卷一、选择题1、AB为0的直径,C为O上一点,过C作CDAB于点D,延长

5、CD至E,使DE=CD,那么点E的位置 ( ) A在0 内 B在0上 C在0外 D不能确定2、出下列命题: (l )垂直于弦的直线平分弦; (2 )平分弦的直径必垂直于弦,并且平分弦所对的两条弧; (3 )平分弦的直线必过圆心; (4 )弦所对的两条弧的中点连线垂直平分弦。其中正确的命题有( ) A . 1个 B. 2个 C. 3个 D. 4个3、小明不慎把家里的圆形玻璃打碎了,其中四块碎片如图所示,为配到与原来大小一样的圆形玻璃,小明带到商店去的一块玻璃碎片应该是( )A第块B第块 C第块D第块4、如图,点A,D,G,M在半圆上,四边形ABOC, DEOF,HMNO均为矩形,设BC=a,EF

6、=b, NH=C,则下列各式中正确的是( ) A.abc B.a=b=c C.cab D.bca5、如图,O的直径为10cm,弦AB为8cm , P是弦AB上一点,若OP的长是整数, 则满足条件的点P有( ) A. 2 个 B. 3 个 C. 4 个 D. 5 个二、填空题1、已知矩形的两边长分别为6和8 ,则矩形的四个顶点在以 为圆心,以 为半径的圆上2、若小唐同学掷出的铅球在场地上砸出一个直径约为10 cm、深约为2 cm的小坑,则该铅球的直径约为 。3、如图,已知在O中,直径MN10,正方形ABCD的四个顶点分别在O及半径OM,OP上,并且POM45,则AB的长为_4、如图,点A,B是O

7、上两点,AB=10,点P是O上的动点(P与A,B不重合),连结AP,BP,过点O分别作OEAP于E,OFBP于F,则EF= 5、已知在矩形ABCD中,AB=3 cm,AD=4cm,若以点A为圆心作A,使B,C,D三点中至少有一点在圆内,且至少有一点在圆外,则A的半径R的取值范围是 。三、解答题1、我们将能完全覆盖某平面图形的最小圆称为该平面图形的最小覆盖圆例如线段AB的最小覆盖圆就是以线段AB为直径的圆(1)请分别作出图中两个三角形的最小覆盖圆(要求用尺规作图,保留作图痕迹,不写作法);(2)探究三角形的最小覆盖圆有何规律?请写出你所得到的结论(不要求证明);2、已知:如图,M是弧AB的中点,

8、过点M的弦MN交AB于点C,设O的半径为4cm,MN4cm(1)求圆心O到弦MN的距离;(2)求ACM的度数3、已知:如图10,在ABC中,点D是BAC的角平分线上一点,BDAD于点D,过点D作DEAC交AB于点E求证:点E是过A,B,D三点的圆的圆心参考答案:A一、选择题1、C 提示:直径是弦,弦不一定是直径,只能经过圆心的弦是直径;弧不一定是半圆,过圆心的线段不一定是直径,只有线段的两个端点在圆上;故选C。2、D 提示:因为过一个点可以作无数条直线,所以A是错的;又因过两个点只能作一条直线,所以B也是错的;若三点要确定一个圆时,这三点应该不在同一条直线上;故选D。3、D 提示:圆是轴对称图

9、形,它的对称轴是经过圆心的任意一条直线,故圆的对称轴有无数条,故选D;4、B 提示:因为P到O的距离为=13,所以PO等于圆的半径,所以点O在圆上。5、D 提示:利用垂径定理与勾股定理来求得弦的一半的长度。6、B 提示:因为直角三角形的外接圆的直径是直角三角形扔斜边,所以直径直径等于=2,OC,所以选B。7、B 提示:点P在圆上,所以OP=6,又因为P是OA的中点,所以OA=2OP=12。故选B。8、C 故选C二、填空题1、相等,圆上2、6 提示:过圆心作弦的垂线,再利用勾股定理=6可求。3、上,外,内。提示:因为AC=2,所以点A在圆上;因BC2,所以点B在圆外;因DC2,所以点D在圆内。4

10、、垂直平分线5、8 提示:因CDAB,CM=DM。又因AB=AM+BM=10,所以半径OC=5。连结在直角三角形CMO中,CM=4,所以CD=2CM=8。6、3cm 提示:圆中过一个点最长的弦是过这个点的直径,最短的弦是与这条直径垂直的弦。所以利用垂径定理可求。7、2.5或多6.5 提示:点P的圆外时,圆的直径等于9-4=5,故半径为2.5;点P在圆内时,圆的直径等于9+4=13,故半径为6.5。8、10 提示:设圆的半径等于x,则有x2-(x-4)2=82,解得x=10。三、解答题1、(1)证明:C、D是OA、OB的中点 OC=OD=AC=BD 在AOD和BOC中 OC=OD AOD=BOC

11、 OA=OB AODBOC A=B(2)在ACE和BDE中 AC=BD A=B AEC=BED ACEBDE AE=BE2、解:四边形OCDB是平行四边形,B(8,0),CDOA,CDOB8 过点M作MFCD于点F,则CFCD4过点C作CEOA于点E,A(10,0),OEOMMEOMCF541连结MC,则MC0A5。在RtCFM中,MF3点C的坐标为(1,3)3、解:过点O作OGAP于点G连接OF DB=10, OD=5 AO=AD+OD=3+5=8PAC=30 OG=AO=cm OGEF, EG=GF GF= EF=6cm。4、(1)正确作出图形,并做答 (2)解:过O作OCAB于D ,交弧

12、AB于C,OCAB , BDAB168cm由题意可知,CD4cm设半径为x cm,则OD(x4)cm在RtBOD 中,由勾股定理得:OD2BD2OB2, ( x4)282x2x10即这个圆形截面的半径为10cmB、一、选择题1、B 提示:利用圆是轴对称图形可知E点在圆上2、A 提示:(1)(2)(3)都是错的。(1)错在这条直线没有经超过圆心;(2)错在这条弦应该是不经过圆心的;(3)错平分弦的直线不一定经过圆心;3、B 提示:第(2)图中能作出线段的垂直平分线,从而可作出这条弧所在圆的圆心。4、B 提示:矩形的对角线相等,从而可知三个矩形的对角线都等于圆的半径。5、D 提示:先求出OP的取值

13、范围为3OP5,而OP=3的点只有一个,OP=4的点有2个,OP=5的点有2个,故符合条件的点P有5个。二、填空题1、对角线交点 5 提示:因矩形的对角线是圆的直径。所以两条对角线的交点为圆心,半径为5。2、145 提示:利用垂径定理与勾股定理来解决。设球的半径为r,则有r2+(r-2)2=52,求得r=29/4。3、 提示:设正方形的边长为x,在RtABO中OA2=AB2+OB2,所以52=x2+(2x)2,x=。4、5 提示:因OEAP于E,OFBP,所以E、F分别是AC,BC的中点。所以EF是三角形的中位线,从而可求EF=AB=5。5、3R5 提示:至少有一点在圆内,则只有点B在圆内,故半径大于3;另外至少有一点在圆外,则只有点C在圆外,故半径小于5。三、解答题1、解:(1)如图所示: AABBCC(2)若三角形为锐角三角形,则其最小覆盖圆为其外接圆; 若三角形为直角或钝角三角形,则其最小覆盖圆是以三角形最长边(直角或钝角所对的边)为直径的圆2、解:(1)连结OM点M是弧AB的中点,OMAB 过点O作ODMN于点D,ABCMNOD由垂径定理,得 在RtODM中,OM4,OD故圆心O到弦MN的距离为2 cm (2)在RtABC中OD=OM OMD30,ACM603、证明:点在的平分线上又 , 又于点, ABCDE123 过三点确定一圆,又是所在的圆的直径 点是所在的圆的圆心

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 单元课程

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁