《二次根式的除法课件.ppt》由会员分享,可在线阅读,更多相关《二次根式的除法课件.ppt(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、21.2.3 二次根式的除法二次根式的除法思考:二次根式的除法有没有类似的法则呢?思考:二次根式的除法有没有类似的法则呢?请试着自己举出一些例子请试着自己举出一些例子1.二次根式的乘法:二次根式的乘法:算术平方根的积等于各个被开方数积的算术平方根算术平方根的积等于各个被开方数积的算术平方根积的算术平方根等于积中各因式的算术平方根积的算术平方根等于积中各因式的算术平方根.复习提问复习提问abba) 0, 0( baabba (a0,b0) 94,94.1 4916,4916.29494491649160, 0bababa两个二次根式相除,等于把被开方数相除,两个二次根式相除,等于把被开方数相除,
2、作为商的被开方数作为商的被开方数,根指数不变。根指数不变。32327474计算下列各式计算下列各式,观察计算结果观察计算结果,你发现什么规律你发现什么规律?3232(3)5252规律规律:0, 0ba例:计算例:计算 1812323241解:解: 832432412224 18231812318123293baba331 10 05 50 0( (2 2) ) 2 23 32 2) 1 (计算:计算: 10751436152112)4(解:解:原式)3(原式)4(107514710521621115262365265如果根号前如果根号前有系数,就有系数,就把系数相除,把系数相除,仍旧作为二仍旧
3、作为二次根号前的次根号前的系数。系数。 4162322321 5105010502ba商的算术平方根等于被除式的算术平方根商的算术平方根等于被除式的算术平方根除以除式的算术平方根。除以除式的算术平方根。0, 0ba例例5:化简:化简 103100310031解:解: yxyxyx35925925322ba两个二次根式相除,等于把被开方数相除,两个二次根式相除,等于把被开方数相除,作为商的被开方数作为商的被开方数1631)2(1003) 1 ()(16312注意:注意:如果被开方数是如果被开方数是带分数,应先化带分数,应先化成假分数。成假分数。16191619419 29253yx练习一:练习一
4、:9721)(281(2)025xx2216(3)0,0b caba359259259721)(解:解:例例6:计算:计算babababa0, 0ba a283272325315353.1解法555351525152515555353.2解法515 363332332327232 aaaaaaaa2242228283解:解: 1 在二次根式的运算中,在二次根式的运算中, 最后结果一般要求最后结果一般要求(1)分母中不含有二次根式分母中不含有二次根式.(2) 最后结果中的二次根式最后结果中的二次根式要求写成最简的二次根式要求写成最简的二次根式的形式的形式.1. 1.被开方数不含分母被开方数不含分
5、母2.2.被开方数不含能开得尽被开方数不含能开得尽方的因数或因式方的因数或因式练习:练习:把下列各式化简把下列各式化简(分母有理化分母有理化):73241)(baa22)(40323)(73241)()(baa22)(40323解:解:注意:要进行根式化简,关键是要搞清楚分注意:要进行根式化简,关键是要搞清楚分式的分子和分母都乘什么,有时还要先对分式的分子和分母都乘什么,有时还要先对分母进行化简。母进行化简。773724;21144bababaa2babaa21023210106102602030560521.1.在横线上填写适当的数或式子使等式成立。在横线上填写适当的数或式子使等式成立。练习
6、二:练习二:2.2.把下列各式的分母有理化:把下列各式的分母有理化:8381)(27232)(a10a53)(xy4y242)(3.3.化简:化简:95191)()()(41223481926234)(1a3)( ) a1522)( ) 1081)( ) 42a1535、如图,在、如图,在RtABC中中,C=900,A=300,AC=2cm,求斜边求斜边AB的长的长ABC。成立的条件是成立的条件是、等式、等式_5m3m5m3m1。成立的条件是成立的条件是、等式、等式_5m3m5m3m1. 4m55m1、 解 : 要 使 等 式 成 立 , m必 须 满 足m-30m-504思考题:思考题:)的
7、值。)的值。(求求,满足满足、已知实数、已知实数b1abbaa203a4b3111ba4ba2 1. 1. 利用商的算术平方根的性质化简二次根式。利用商的算术平方根的性质化简二次根式。课堂小结:课堂小结:)a(ba=ba0b0,3. 3. 在进行分母有理化之前,可以先观察把能化简的在进行分母有理化之前,可以先观察把能化简的 二次根式先化简,再考虑如何化去分母中的根号。二次根式先化简,再考虑如何化去分母中的根号。2. 2. 二次根式的除法有两种常用方法:二次根式的除法有两种常用方法:(1 1)利用公式:)利用公式:(2 2)把除法先写成分式的形式,再进行分母有理)把除法先写成分式的形式,再进行分母有理 化运算。化运算。