《实际问题与二次函数第三课时.ppt》由会员分享,可在线阅读,更多相关《实际问题与二次函数第三课时.ppt(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、(1)列出二次函数的解析式,并根)列出二次函数的解析式,并根据自变量的实际意义,确定自变量的据自变量的实际意义,确定自变量的取值范围;取值范围;(2)在自变量的取值范围内,运用)在自变量的取值范围内,运用公式法或通过配方求出二次函数的最公式法或通过配方求出二次函数的最大值或最小值。大值或最小值。 抛物线形拱桥,当水面在抛物线形拱桥,当水面在 时,时,拱顶离水面拱顶离水面2m2m,水面宽度,水面宽度4m4m,水,水面下降面下降1m1m,水面宽度增加多少?,水面宽度增加多少?lxy0(2,-2)(-2,-2)解:设这条抛物线表示的二次解:设这条抛物线表示的二次函数为函数为 由抛物线经过点(由抛物线
2、经过点(2,2),),可得可得 所以,这条抛物线的二次函数所以,这条抛物线的二次函数为:为:当水面下降当水面下降1m时,水面的纵时,水面的纵坐标为坐标为当当 时,时,所以,水面下降所以,水面下降1m,水面的,水面的宽度为宽度为 m2axy 21a221xy3y3y6x62462水面的宽度增加了水面的宽度增加了m3米2092098米4米4米例例. .一场篮球赛中,小明跳起投篮,已知球出一场篮球赛中,小明跳起投篮,已知球出手时离地面高手时离地面高 米米,与篮圈中心的水平距,与篮圈中心的水平距离为离为8 8米,当球出手后水平距离为米,当球出手后水平距离为4 4米时到米时到达最大高度达最大高度4 4米
3、,设篮球运行的轨迹为抛物米,设篮球运行的轨迹为抛物线,篮圈中心距离地面线,篮圈中心距离地面3 3米。米。问此球能否投中?问此球能否投中?二次函数与体育运动二次函数与体育运动048(4,4)920 xy如图,建立平面如图,建立平面 直角坐标系,直角坐标系,点(点(4,4)是图中这段抛物)是图中这段抛物线的顶点,因此可设这段抛线的顶点,因此可设这段抛物线对应的函数为:物线对应的函数为:442xay(0 x8)9200,抛物线经过点4409202a91 a44912xy(0 x8)9208yx时,当篮圈中心距离地面篮圈中心距离地面3米米此球不能投中此球不能投中若假设出手的角度和力度都不变若假设出手的角度和力度都不变, ,则如何才能使此球命中则如何才能使此球命中? ?探究(1)跳得高一点)跳得高一点(2)向前平移一点)向前平移一点解决抛物线形实际问题的一般步骤:解决抛物线形实际问题的一般步骤:建立直角坐标系建立直角坐标系二次函数二次函数 问题求解问题求解找出实际问题的答案找出实际问题的答案