四种命题与充要条件.docx

上传人:叶*** 文档编号:35577984 上传时间:2022-08-22 格式:DOCX 页数:11 大小:54.60KB
返回 下载 相关 举报
四种命题与充要条件.docx_第1页
第1页 / 共11页
四种命题与充要条件.docx_第2页
第2页 / 共11页
点击查看更多>>
资源描述

《四种命题与充要条件.docx》由会员分享,可在线阅读,更多相关《四种命题与充要条件.docx(11页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、常用逻辑用语与充要条件【高考考情解读】1.本讲在高考中主要考查集合的运算、充要条件的判定、含有一个量词的命题的真假判断与否定,常与函数、不等式、三角函数、立体几何、解析几何、数列等知识综合在一起考查.2.试题以选择题、填空题方式呈现,考查的基础知识和基本技能,题目难度中等偏下1命题的定义用语言、符号或式子表达的,可以 判断真假的陈述句叫做命题其中判断为真的语句叫真命题,判断为假的语句叫假命题2 四种命题及其关系(1)原命题为“若p则q”,则它的逆命题为若q则p ;否命题为若p则q ;逆否命题为若q则p .(2)原命题与它的逆否命题等价;逆命题与它的否命题等价四种命题中原命题与逆否命题同真同假,

2、逆命题与否命题同真同假,遇到复杂问题正面解决困难的,采用转化为反面情况处理,即,可以转化为判断它的逆否命题的真假命题真假判断的方法:(1)对于一些简单命题,若判断其为真命题需推理证明若判断其为假命题只需举出一个反例(2)对于复合命题的真假判断应利用真值表(3)也可以利用“互为逆否命题”的等价性,判断其逆否命题的真假3充分条件与必要条件的定义(1)若pq且qp,则p是q的充分非必要条件(2)若qp且pq,则p是q的必要非充分条件(3)若pq且qp,则p是q的充要条件(4)若pq且qp,则p是q的非充分非必要条件设集合Ax|x满足条件p,Bx|x满足条件q,则有(1)若AB,则p是q的充分条件,若

3、AB,则p是q的充分不必要条件;(2)若BA,则p是q的必要条件,若BA,则p是q的必要不充分条件;(3)若AB,则p是q的充要条件;(4)若AB,且BA,则p是q的既不充分也不必要条件2充分、必要条件的判定方法(1)定义法,直接判断若p则q、若q则p的真假(2)传递法(3)集合法:若p以集合A的形式出现,q以集合B的形式出现,即Ax|p(x),Bx|q(x),则若AB,则p是q的充分条件;若BA,则p是q的必要条件;若AB,则p是q的充要条件(4)等价命题法:利用AB与BA,BA与AB,AB与BA的等价关系,对于条件或结论是否定式的命题,一般运用等价法,利用原命题和逆否命题是等价的这个结论,

4、有时可以准确快捷地得出结果,是反证法的理论基础1 简单的逻辑联结词(1)命题中的“且”、“或”、“非”叫作逻辑联结词(2)简单复合命题的真值表:pqpqp或qp且q(p或q)(p且q)p或qp且q真真假假真真假假假假真假假真真假假真真假假真真假真假假真真假假假真真假假真真真真2. 全称量词与存在量词(1)常见的全称量词有“任意一个”“一切”“每一个”“任给”“所有的”等(2)常见的存在量词有“存在一个”“至少有一个”“有些”“有一个”“某个”“有的”等3 全称命题与特称命题(1)含有全称量词的命题叫全称命题(2)含有存在量词的命题叫特称命题4 命题的否定(1)全称命题的否定是特称命题;特称命题

5、的否定是全称命题(2)p或q的否定:非p且非q;p且q的否定:非p或非q.注:1 逻辑联结词“或”的含义逻辑联结词中的“或”的含义,与并集概念中的“或”的含义相同如“xA或xB”,是指:xA且xB;xA且xB;xA且xB三种情况再如“p真或q真”是指:p真且q假;p假且q真;p真且q真三种情况2 命题的否定与否命题“否命题”是对原命题“若p,则q”的条件和结论分别加以否定而得到的命题,它既否定其条件,又否定其结论;“命题的否定”即“非p”,只是否定命题p的结论命题的否定与原命题的真假总是对立的,即两者中有且只有一个为真,而原命题与否命题的真假无必然联系3 含一个量词的命题的否定全称命题的否定是

6、特称命题,特称命题的否定是全称命题1(2013皖南八校)命题“若一个数是负数,则它的平方是正数”的逆命题是()A“若一个数是负数,则它的平方不是正数”B“若一个数的平方是正数,则它是负数”C“若一个数不是负数,则它的平方不是正数”D“若一个数的平方不是正数,则它不是负数”解析依题意得原命题的逆命题是:若一个数的平方是正数,则它是负数选B.2 (2012湖北)命题“存在一个无理数,它的平方是有理数”的否定是()A任意一个有理数,它的平方是有理数B任意一个无理数,它的平方不是有理数C存在一个有理数,它的平方是有理数D存在一个无理数,它的平方不是有理数答案B解析 这是一个特称命题,特称命题的否定不仅

7、仅要否定结论而且要将相应的存在量词“存在一个”改为全称量词“任意一个”,故选B。 2已知a,b,cR,命题“若abc3,则a2b2c23”的否命题是()A若abc3,则a2b2c23B若abc3,则a2b2c2y,则x|y|”的逆命题B命题“若x1,则x21”的否命题C命题“若x1,则x2x20”的否命题D命题“若x20,则x1”的逆否命题答案A解析对于A,其逆命题:若x|y|,则xy,是真命题,这是因为x|y|,必有xy;对于B,否命题:若x1,则x21,是假命题如x5,x2251;对于C,其否命题:若x1,则x2x20,因为x2时,x2x20,所以是假命题;对于D,若x20,则x0或x1,

8、因此原命题的逆否命题是假命题,故选A.2已知命题p:nN,2n1 000,则p为()AnN,2n1 000 BnN,2n1 000CnN,2n1 000 DnN,2n1 000解析特称命题的否定是全称命题即p:xM,p(x),则p:xM,p(x)故选A.答案A4 (2012湖北改编)命题“存在x0RQ,xQ”的否定是()A存在x0D/RQ,xQ B存在x0RQ,xD/QC任意xD/RQ,x3Q D任意xRQ,x3D/Q答案D解析“存在”的否定是“任意”,x3Q的否定是x3D/Q.命题“存在x0RQ,xQ”的否定是“任意xRQ,x3D/Q”,故应选D.1 (2011安徽)命题“所有能被2整除的整

9、数都是偶数”的否定是 ()A所有不能被2整除的整数都是偶数B所有能被2整除的整数都不是偶数C存在一个不能被2整除的整数是偶数D存在一个能被2整除的整数不是偶数答案D解析由于全称命题的否定是特称命题,本题“所有能被2整除的整数都是偶数”是全称命题,其否定为特称命题“存在一个能被2整除的整数不是偶数”2 (2012辽宁改编)已知命题p:对任意x1,x2R,(f(x2)f(x1)(x2x1)0,则p是()A存在x1,x2R,(f(x2)f(x1)(x2x1)0B对任意x1,x2R,(f(x2)f(x1)(x2x1)0C存在x1,x2R,(f(x2)f(x1)(x2x1)0D对任意x1,x2R,(f(

10、x2)f(x1)(x2x1)0答案C解析p:存在x1,x2R,(f(x2)f(x1)(x2x1)1”的否定是()A对任意实数x,都有x1B不存在实数x,使x1C对任意实数x ,都有x1D存在实数x,使x1答案C解析利用特称命题的否定是全称命题求解“存在实数x,使x1”的否定是“对任意实数x,都有x1”故选C.11给出以下三个命题:若ab0,则a0或b0;在ABC中,若sin Asin B,则AB;在一元二次方程ax2bxc0中,若b24ac0的解集为,故由x2x2x10,但2x2x10D/x,故选A.(2) 在ABC中,由正弦定理得sin Asin BabAB.故选B.6 下列结论:若命题p:

11、存在xR,tan x1;命题q:对任意xR,x2x10.则命题“p且q”是假命题;已知直线l1:ax3y10,l2:xby10,则l1l2的充要条件是3;命题“若x23x20,则x1”的逆否命题:“若x1,则x23x20”其中正确结论的序号为_答案解析中命题p为真命题,命题q为真命题,所以p且q为假命题,故正确;当ba0时,有l1l2,故不正确;正确所以正确结论的序号为.5 下列命题中正确命题的序号是_若ac2bc2,则ab;若sin sin ,则;“实数a0”是“直线x2ay1和直线2x2ay1平行”的充要条件;若f(x)log2x,则f(|x|)是偶函数答案解析对于,ac2bc2,c20,

12、ab正确;对于,sin 30sin 150D/30150,所以错误;对于,l1l2A1B2A2B1,即2a4aa0且A1C2A2C1,所以对;对于显然对6 已知p(x):x22xm0,如果p(1)是假命题,p(2)是真命题,则实数m的取值范围为_答案3,8)解析因为p(1)是假命题,所以12m0,解得m3;又因为p(2)是真命题,所以44m0,解得m8.故实数m的取值范围是3m0”的否定是“x0R,2x00”答案D解析对A,只有当p,q全是真命题时,pq为真;对B,sin 2k或2k,kZ,故“sin ”是“”的必要不充分条件;对C,l,l或l;对D,全称命题的否定是特称命题,故选D.15给出

13、下列四个命题:命题“若,则cos cos ”的逆否命题;“x0R,使得xx00”的否定是:“xR,均有x2x0”的否定应是:“xR,均有x2x0”,故错;对,因由“x24”得x2,所以“x24”是“x2”的必要不充分条件,故错;对,p,q均为真命题,由真值表判定p且q为真命题,故正确10给出下列命题:xR,不等式x22x4x3均成立;若log2xlogx22,则x1;“若ab0且c”的逆否命题;若p且q为假命题,则p,q均为假命题其中真命题是()A B C D答案A解析中不等式可表示为(x1)220,恒成立;中不等式可变为log2x2,得x1;中由ab0,得,而c1,则mx22(m1)xm30

14、的解集为R”的逆命题其中真命题是_(把你认为正确命题的序号都填在横线上)解析:原命题为真,而它的逆命题、否命题不一定为真,互为逆否命题同真同假,故错误,正确又因为不等式mx22(m1)xm30的解集为R,由m1.故正确答案:3设x,yR,则“x2y29”是“x3且y3”的()A充分不必要条件 B必要不充分条件C充分必要条件 D既不充分也不必要条件答案B解析 结合图形与性质,从充要条件的判定方法入手如图:x2y29表示以原点为圆心,3为半径的圆上及圆外的点,当x2y29时,x3且y3并不一定成立,当x2,y3时,x2y29,但x3且y3不成立;而x3且y3时,x2y29一定成立,故选B. 一个命

15、题的否命题、逆命题、逆否命题是根据原命题适当变更条件和结论后得到的形式上的命题,解这类试题时要注意对于一些关键词的否定,如本题中等于的否定是不等于,而不是单纯的大于、也不是单纯的小于进行充要条件判断实际上就是判断两个命题的真假,这里要注意断定一个命题为真需要进行证明,断定一个命题为假只要举一个反例即可4“a0”是“|a|0”的()A充分不必要条件B必要不充分条件C充要条件 D既不充分也不必要条件解析因为|a|0a0或a0|a|0,但|a|0a0,所以a0是|a|0的充分不必要条件,故选A.50x5是不等式|x2|4成立的()A充分不必要条件 B必要不充分条件C充要条件 D既不充分也不必要条件解

16、析由|x2|4,得2x6。0x5是2x”是“2x2x10”的()A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件3 (2013福建)已知集合A1,a,B1,2,3,则“a3”是“AB”的()A充分而不必要条件 B必要而不充分条件C充分必要条件 D既不充分也不必要条件答案A解析a3时A1,3,显然AB.但AB时,a2或3.所以A正确6 (2013陕西)设a,b为向量,则“|ab|a|b|”是“ab”的()A充分不必要条件B必要不充分条件C充分必要条件D既不充分也不必要条件答案C解析由|a|b|cosa,b|a|b|,则有cosa,b1.即a,b0或,所以ab.由ab,

17、得向量a与 b同向或反向,所以a,b0或,所以|ab|a|b|.(1)已知p:4xa4,q:(x2)(x3)0,且q是p的充分条件,则a的取值范围为_【解析】设q,p表示的范围为集合A,B,则A(2,3),B(a4,a4)因为q是p的充分条件,则有AB,则所以1a6.13设p:0,q:0xm,若p是q成立的充分不必要条件,则m的取值范围是_答案(2,)解析p:0x2.8 已知p:xR,mx220,q:xR,x22mx10,若pq为假命题,则实数m的取值范围是()A1,) B(,1C(,2 D1,1答案A解析pq为假命题,p和q都是假命题由p:xR,mx220为假命题,由綈p:xR,mx220为真命题,m0.由q:xR,x22mx10为假命题,得綈q:xR,x22mx10为真命题,(2m)240m21m1或m1.由和得m1,故选A.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁