分数基本性质教学设计说课稿反思.doc

上传人:叶*** 文档编号:35419553 上传时间:2022-08-21 格式:DOC 页数:13 大小:45.50KB
返回 下载 相关 举报
分数基本性质教学设计说课稿反思.doc_第1页
第1页 / 共13页
分数基本性质教学设计说课稿反思.doc_第2页
第2页 / 共13页
点击查看更多>>
资源描述

《分数基本性质教学设计说课稿反思.doc》由会员分享,可在线阅读,更多相关《分数基本性质教学设计说课稿反思.doc(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、分数的根本性质教学设计朱王堡明德小学:冯德威教学内容:人教课标实验教材五年级下册P75-76页内容教学目标:1使学生经历探索分数根本性质的过程,初步理解分数的根本性质。2使学生能运用分数的根本性质,把一个分数化成指定分母或分子而大小不变的分数。3使学生在观察、操作、思考和交流等活动中,培养分析、综合和抽象、概括的能力,表达数学学习的乐趣。教学重点:理解分数的根本性质。教学难点:根据分数的根本性质,把一个分数化成指定的分母或分子而大小不变的分数。教具准备:大小一样的正方形纸3张、彩笔、多媒体课件。教学过程:一、课前检测课件出示二、激趣引入课件出示孙悟空分饼的故事。利用故事引起学生兴趣,让学生发表

2、见解。三、互动新授1教学例1分数的根本性质1猜测验证。小组合作动手折一折、涂一涂2各小组派代表汇报结果。3教师在课件上演示分饼。问题:这三个分数有什么不同的地方?有什么一样的地方?4小组合作讨论。=先从左往右观察,分数的分子及分母是怎样变化的?从右往左观察,分数的分子及分母是怎样变化的?同桌讨论后汇报5可能提出:那乘3或5呢?分数是否仍然相等,自己可以任意举例。小结:像分数的分子分母发生的这种有规律的变化,就是我们这节课学习的新知识。分数的根本性质板题6综合以上两种变化情况,谁能用一句话概括出其中的规律?分数的分子、分母同时乘或除以一个一样的数0除外,分数的大小不变。这叫分数的根本性质。板书7

3、理解概念。8小结。2教学例2.1课件出例如2.2教师提问:怎样才能把和这两个分数化成分母是12而大小不变的分数? 3学生思考后答复。4即时练习。四、当堂检测课件出示五、全课总结通过这节课的学习,你有什么收获?六、作业布置完成课本练习十四的6、8题。七、板书设计:动态生成?分数的根本性质?说课稿朱王堡中心小学 冯德威各位领导、教师大家好!今天很快乐有时机参加这次教学观摩研讨活动,并能得到各位专家的指导。我今天执教的内容是:?分数的根本性质?,下面我将根据自己编写的教学设计,从教学内容、目标、方法、过程设计方面做一个说明。 一、教学内容分析: 1?分数的根本性质?是人教版小学数学五年级下册第四单元

4、?分数的意义和性质?中的内容, 学习本内容之前,学生已清楚理解分数的意义,明确分数及除法的关系,商不变性质等知识,这些都为本课学习做了知识上的铺垫。分数的根本性质也为后面学习约分和通分以及分数的四那么运算、比的根本性质打下根底。它在整个分数教学中占有重要的地位。2学生分析: 五年级学生已经具有了一定的分析和解决问题的能力,再加上他们所具有的一定的生活经历,因此能够在教师的引导下完成“质疑探索释疑应用这一完整的学习过程。因而如何设计导学目标,如何引导学生质疑和总结归纳便成为组织学生进展学习的重要任务。二、教学目标:1学生能理解和掌握分数的根本性质,知道分数的根本性质及整数除法中商不变的性质之间的

5、联系。 2学生能运用分数的根本性质把一个分数化成分母不同而大小相等的分数。 3培养学生观察、比拟、抽象概括的逻辑思维能力,渗透“事物之间是相互联系的辩证唯物主义观点。 三、教学重难点:依据数学新课程标准,我确立本节课的教学重点是:理解和掌握分数的根本性质 。教学难点:让学生自主探索,发现和归纳分数的根本性质,并会应用分数的根本性质解决相关问题。四、教法、学法分析:“将课堂还给学生,让课堂焕发生命活力,鉴于分数的根本性质这一局部内容及除法中商不变的规律有着密切的联系,所以在组织学生参及学习时先从复习除法的商不变规律入手,引发学生的内在知识积累。而分数的根本性质这一新知识的学习是从分数的大小相等这

6、一算理引出的,理解分数大小相等的关键在于理解为什么把分母分的份数和分子表示的份数都乘上或除以同一个不为0的数,分数的大小不变,这对于小学生来说,依靠说理来弄懂它是比拟困难的。因此在引导学生学习时我为学生创设一种开放式的探索活动,创设了一种“情境导入、动手体验、自主探索的教学模式,引导学生迁移旧知、大胆猜测实验操作、验证质疑讨论、完善猜测等,把这一系列探究过程放大,把“过程性目标凸显出来。设计通过折纸、涂色的操作活动,使学生获得非常具体、真切的感知,为探究分子、分母的变化规律提供认知根底。在学生初步理解并能简单概括出分数的根本性质时,通过质疑,借助知识的迁移,让学生尝试运用商不变的规律来进一步归

7、纳、理解分数的根本性质。 五、教学设计及流程:一课前检测,迁移旧知。1分数及除法的关系是怎样的?2谁能说出结果?15030 =150430 15030=150 3010课件出示学生说结果3你们是根据什么来填的呢?商不变的性质引导学生回忆什么是商不变的性质?媒体出示:商不变的性质:被除数和除数同时乘或除以一样的数零除外,商不变。设计意图: 这些都为本课学习做了知识上的铺垫。分数的根本性质也为后面学习约分和通分以及分数的四那么运算、比的根本性质打下根底。它在整个分数教学中占有重要的地位。4出示课题。二激趣导入,引导质疑:课件出示猴王分饼的故事。三互动新授1猜测验证。小组合作动手折一折、涂一涂2展示

8、自己所涂的纸条,并说出涂色局部所表示的分数。质疑:刚刚同学们所说的分数中,你能发现哪些分数是相等的吗?或:你能说出及这些分数大小相等,而分子分母不一样的分数吗?教师在学生的描述中记录下可能出现的一组分数:1/2 2/4 4/8并展示表示这些分数的涂色的纸条。3引导学生质疑:观察这些分数,你发现了什么?学生在直观的观察中能发现1/2=2/4=4/84引导观察,发现规律。5理解概念。在学生已经掌握了分数的根本性质后,我抓住这节课的难点问题接着问:在分数的根本性质中,为什么提到零除外呢?学生已经知道了分数及除法的关系,所以能够很容易的得出结论:分数中分母不能为零这一质疑使学生加深了对概念表述的完整性

9、及准确性的感知。6质疑反思,解决问题例2、把和这两个分数化成分母是12而大小不变的分数。 设计意图:进一步加深学生对分数根本性质的理解。在练习中培养学生解决问题的能力,开展应用意识,在评价反思中使学生获得成功的体验。四质疑反思,拓展延伸1让学生列举出几个这样的例子。在列举中掌握分数大小不变的规律。2在学生了解了分数的根本性质后,留给学生交流、反思和小结的时机,学生有可能会说自己的感受,如:我可以自己猜出并证明了分数的根本性质,我很自豪。也可能会提出一些问题,如:分数的分子和分母同时加或者减一样的数,分数的大小会不变吗?分数的分子不变,分母变大,分数的大小会变吗?这时我可以把他们转化为学生运用已

10、学方法解决问题的时机,让学生分组选择不同的问题,合作解决,再汇报交流。3在学生已经掌握了分数的根本性质后,我抓住这节课的难点问题接着问:在分数的根本性质中,为什么提到零除外呢?学生已经知道了分数及除法的关系,所以能够很容易的得出结论:分数中分母不能为零这一质疑使学生加深了对概念表述的完整性及准确性的感知。五当堂检测,稳固深化。通过学生由浅入深,由易到难的练习,让学生对分数的根本性质再一次的体验,感受,研究。了解教学目标完成情况。六最后让学生谈谈本节课的收获。通过反思,使学生对知识有个系统的回忆和认识 总之,本节课教学是坚持了“学生是探索的主体这一教学原那么,面向全体学生,充分的引导学生动手实验

11、,自主探索,质疑延伸,合作交流,让每一个学生在探索的过程中感受数学和日常生活的严密联系,体验学习数学的快乐,培养了创新精神和实践能力。“分数的根本性质教学反思朱王堡中心小学:冯德威“分数的根本性质在分数教学中占有重要的地位,它是约分,通分的依据,对于以后学习比的根本性质也有很大的帮助,所以,分数的根本性质是本单元的教学重点之一,以前我曾经也听过别人上过几节这样的课,感觉学生都比拟容易理解,觉得这知识不难,用不着教师多讲了,也就使整节课显得有点单调,枯燥,基于以上原因,我在设计这节课时,大胆利用“猜测和验证方法,留给学生足够的探索时间和广阔的思维空间,让学生得到不仅是数学知识,更主要的是数学学习

12、的方法,从而鼓励学生进一步地主动学习,产生我会学的成就感。反思本节课,我认为以下几点做得较成功: 1新课的引入新颖,一上课,先听一段故事?猴王分饼?,学生非常乐意,并立即被吸引。思考故事当中提出的问题,学生自然兴趣浓厚。通过故事设疑,激起了学生探求新知的欲望。新课的教学扎实,重视了学生获取知识的思维过程。紧紧围绕教学重点,通过学生一系列的活动,获得丰富的感性知识,在此根底上进展抽象概括,使学生深刻理解分数的根本性质。教师环环紧扣的提问以及引导学生逐步展开的充分的讨论,帮助学生一步步得出结论。得出性质后,再让学生说出孙悟空的想法,并答复如果第三只猴子要4块,猴王怎么办?既前后照应,又让学生在帮猴

13、王想方法的过程中,运用新知解决实际问题。 2重视学生能力的培养,知识力求让学生主动探索,逐步获取。在教学中,教师为学生提供了自主探索的时机,通过让学生动手、动口、动脑,充分参及教学活动,培养了学生的抽象概括能力、动手操作能力和口头表达能力,充分表达学生的主体作用。 3课堂练习形式多样,有层次,有梯度,目的性、针对性较强,到达了稳固知识、培养技能、激发兴趣、开展思维的目的。 本节课出现的问题也很多:首先,在验证、交流环节学生们参及率并不高,好多学生尤其是后进生普遍是无从下手,在交流时也不主动,很多学生还停留在一知半解的状态。其次,验证的方法也不多。学生们只应用了商不变的性质,分数及除法的关系,以

14、及分子及分母的倍数关系,最直观最重要的用线段及实物来验证的同学很少。由于是时间关系,我没有让学生在这方面有过多的停留,显然,验证得还不够透彻,局部同学还有疑虑。以后如果再上这节课,我想在这个环节上作一些处理。就是让每位学生在自己准备的纸上画一画、折一折、或剪一剪,通过动手操作来验证自己的猜测是否正确,从而培养学生的动手能力,以及观察问题解决问题的能力。数学知识的特点之一就是具有抽象性,我们的教学就应善于把抽象的知识具体化,帮助学生实践, 认识,再实践,再认识,从而较好地全面理解、掌握所学知识。我在这节?分数根本性质?的教学设计中充分表达了这一实践论的观点,既符合儿童的认识规律,又符合儿童心理年

15、龄特征。教学一开场,就以小学生喜欢的?猴王分饼?这一生动、有趣的故事导入,这不仅激发了学生的学习兴趣,更引发了学生的求知欲望,充分运用了猜测和情景引入等方式,吸引学生主动参及对新知识的探究,把抽象的分数根本性质具体化了。然后,我抓住分数根本性质的本质属性,通过让学生动手操作,引导学生从分数的意义,对三个分数,从不同方位进展观察,从乘扩大、除缩小两方面分析,使学生从变中看到不变,在怎样的变化中得出不变,从而将感性的认识上升到理性认识,把具体的知识条理化,归纳得出规律,让学生参及学习的全过程,在掌握所学知识的同时获得成功的体验。当总结出规律后再提出为什么这里的一样数不能为零,并通过正反实例的判断及商不变性质的联系,使学生全面理解掌握分数的根本性质,在教学中我还注意关注学生的多种思维方式,鼓励学生用自己的语言表达解决问题的过程,表达了不同的人学不同的数学的课程理念。这也充分表达了认识论的观点,也表达了教学构造的严密性、科学性,更表达了对学生观察能力、动手操作能力、逻辑思维能力和抽象概括能力的培养。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 工作报告

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁