《高一数学主要是必修二和必修五.doc》由会员分享,可在线阅读,更多相关《高一数学主要是必修二和必修五.doc(6页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、如有侵权,请联系网站删除,仅供学习与交流高一数学主要是必修二和必修五【精品文档】第 6 页高一下学期期末考试数学一、选择题(本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的)1已知点P()在第三象限,则角在( )A第一象限 B第二象限 C第三象限 D第四象限2已知各项均为正数的等比数列,=16,则的值( ) A16 B32 C48 D643已知集合MxR|3x20,NxR|(x1)(x3)0,则MN ( )A(,1) B C D(3,)4已知等差数列中,则数列的前11项和等于( )A . 22 B 33 C . 44 D55 5. ( )A. B. C.
2、 D. 6. 直线l:y=kx3k与圆C:x+y4x=0的位置关系是( )A. l与C相交 B. l与C相切 C. l与C相离 D. 以上三个选项均有可能7. 已知等比数列a的公比为正数,且aa=2a,a=1,则a=( )A. B. C. D. 28下列命题中正确的是 ( )A当B当,C当,的最小值为 D当无最大值已知实数满足,若目标函数的最小值的取值范围是( ),则实数的取值范围是()A B C D 10已知正四棱柱中,为的中点,则点到平面的距离()A2BCD111若圆上至少有三个点到直线:的距离等于,则直线的斜率的取值范围是() A0,2- B(-,2-2+,+) C0,2+D 2-,2+
3、12已知球的直径是该球球面上的两点,且,则三棱锥的体积为() 二、填空题(本大题共4道题,每小题5分,共20分)13已知等比数列的公比为正数,且=,4=,则= 14. 过点(1,6)与圆x+y+6x4y+9=0相切的直线方程是_15. 等比数列a中,a+a=5,a+a=4,则a+a=_16. 已知ABC的一个内角为120,并且三边长构成公差为4的等差数列,则ABC的面积为_三、解答题(本大题共6道题,解答应写出文字说明,演算步骤或证明过程共70分)17(本小题满分10分)等比数列中,已知 (1) 求数列的通项;(2)若等差数列,求数列前n项和,并求最大值和相应的n值18. (本小题满分12分)
4、在ABC中,角A,B,C所对的边分别为a,b,c且满足(1)求角C的大小;(2)求的最大值,并求取得最大值时角A的大小19(本小题满分12分)若函数的最大值为1.(1)求常数的值;(2)求使成立的的取值集合.20(本小题满分12分)围建一个面积为的矩形场地,要求矩形场地的一面利用旧墙,(利用的旧墙需维修),其它三面围墙要新建,在旧墙对面的新墙上要留一个宽度为的进出口,如图所示。已知旧墙的维修费用为元,新墙的造价为元 ,设利用的旧墙的长度为,修建此矩形场地围墙的总费用为元。(1)将表示为的函数;(2)试确定,使修建此矩形场地围墙的总费用最小?并求出最小总费用21(本小题满分12分)如图,在三棱柱
5、ABCA1B1C1中,ACBC,ABBB1,ACBCBB12,D为AB的中点,且CDDA1.( 1 ) 求证:BB1平面ABC; ( 2 ) 求二面角CDA1C1的余弦值22(本小题满分12分) 在平面直角坐标系xOy中,已知圆P在x轴上截得线段长为,在轴上截得线段长为()求圆心P的轨迹方程;()若P点到直线y=x的距离为,求圆P的方程;若圆心P的纵坐标大于零,点M是直线:上的动点,MA,MB分别是圆P的两条切线,A,B是切点,求四边形MAPB面积的最小值参考答案:1-5 BDDCC 6-10 ABBCD 11-12 DB13.1 14. 3x4y+27=0或x=1. 15. 16. 17.解
6、:(1)由 ,得q=2,解得,从而(2)由已知得解得d=-2 由于 所以或时,有最大值7218.解:(1)由正弦定理得因为0A,0C0. 从而sinC=cosC. 又cosC0,所以tanC=1,则 (2)由()知B=A. 于是因为0A,所以,所以当,即A=时,取最大值2. 综上所述,的最大值为2,此时A=19.解:(1) 所以,得 (2)由(1)得,因为,所以, 所以, 即,所以满足的的取值集合为20.解 (1)设矩形的另一边长为m,则,由已知得,得.所以. (2) .当且仅当时,等号成立.即当,修建围墙的总费用最小,最小总费用是10440元.21.(1)证明:ACBC,D为AB的中点,CD
7、AB,又CDDA1,ABA1DD,CD平面AA1B1B,CDBB1,又BB1AB,ABCDD,BB1平面ABC.(2) 以C为原点,分别以,的方向为x轴,y轴,z轴的正方向,建立 空间直角坐标系(如图所示),则C(0,0,0),B(2,0,0),A(0,0,2),C1(0,2,0),A1(0,2,2),D(1,0,1)设n1(x1,y1,z1)是平面DCA1的法向量,则有,即,故可取n1(1,1,1)同理设n2(x2,y2,z2)是平面DC1A1的法向量,且(1,2,1),(0,0,2)则有,即,.故可取n2(2,1,0)cosn1,n2,又二面角CDA1C1的平面角为锐角,所以其余弦值为.22. (1)设P(x,y)有已知得: (2) 因为P(x,y)到x-y=0的距离,所以所以,则所以因为纵坐标大于零,则P(0,1) 因为,若最小,则为P(0,1) 到直线x+y-5=0距离为,所以。