《初三圆的教案.docx》由会员分享,可在线阅读,更多相关《初三圆的教案.docx(12页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 教学辅导方案教学内 容圆学问点教学目 标1、 圆的相关概念2、 弦、弧等及圆有关的定义 3、 垂径定理及其推论4、 圆的对称性 重点难 点1、 点和圆的位置关系 2、 圆周角定理及其推论 3、 直线及圆的位置关系教学过程考点一、圆的相关概念 1、圆的定义在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。2、圆的几何表示以点O为圆心的圆记作“O”,读作“圆O”考点二、弦、弧等及圆有关的定义 (1)弦连接圆上随意两点的线段叫做弦。(如图中的AB)(2)直径经过圆心的弦叫做直径。(如途中的CD)直径等于半径的2倍。(
2、3)半圆圆的随意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。(4)弧、优弧、劣弧圆上随意两点间的局部叫做圆弧,简称弧。弧用符号“”表示,以A,B为端点的弧记作“”,读作“圆弧AB”或“弧AB”。大于半圆的弧叫做优弧(多用三个字母表示);小于半圆的弧叫做劣弧(多用两个字母表示)考点三、垂径定理及其推论 垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧。(3)平分弦所对的一条弧的直径垂直平分弦,并且平分弦所对的另一条弧。推论2:圆的两条平行弦所夹的弧相等。垂径
3、定理及其推论可概括为: 过圆心 垂直于弦直径 平分弦 知二推三 平分弦所对的优弧 平分弦所对的劣弧考点四、圆的对称性 1、圆的轴对称性圆是轴对称图形,经过圆心的每一条直线都是它的对称轴。2、圆的中心对称性圆是以圆心为对称中心的中心对称图形。考点五、弧、弦、弦心距、圆心角之间的关系定理 1、圆心角顶点在圆心的角叫做圆心角。2、弦心距从圆心到弦的间隔 叫做弦心距。3、弧、弦、弦心距、圆心角之间的关系定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦想等,所对的弦的弦心距相等。推论:在同圆或等圆中,假如两个圆的圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别
4、相等。考点六、圆周角定理及其推论 1、圆周角顶点在圆上,并且两边都和圆相交的角叫做圆周角。2、圆周角定理一条弧所对的圆周角等于它所对的圆心角的一半。推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等。推论2:半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径。推论3:假如三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。考点七、点和圆的位置关系 设O的半径是r,点P到圆心O的间隔 为d,则有:dr点P在O外。考点八、过三点的圆 1、过三点的圆不在同始终线上的三个点确定一个圆。2、三角形的外接圆经过三角形的三个顶点的圆叫做三角形的外接圆。3、三角形
5、的外心三角形的外接圆的圆心是三角形三条边的垂直平分线的交点,它叫做这个三角形的外心。4、圆内接四边形性质(四点共圆的断定条件)圆内接四边形对角互补。考点九、直线及圆的位置关系 直线和圆有三种位置关系,详细如下:(1)相交:直线和圆有两个公共点时,叫做直线和圆相交,这时直线叫做圆的割线,公共点叫做交点;(2)相切:直线和圆有唯一公共点时,叫做直线和圆相切,这时直线叫做圆的切线,(3)相离:直线和圆没有公共点时,叫做直线和圆相离。假如O的半径为r,圆心O到直线l的间隔 为d,那么:直线l及O相交dr;考点十、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中,
6、 四边是内接四边形 考点十一、切线的性质及断定定理1、切线的断定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不行 即:且过半径外端 是的切线2、性质定理:切线垂直于过切点的半径(如上图) 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推肯定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最终一个。考点十二、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 ;平分考点十三、圆幂定理1、相交弦定理:圆内两弦
7、相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, 推论:假如弦及直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, 2、切割线定理:从圆外一点引圆的切线和割线,切线长是这点到割线及圆交点的两条线段长的比例中项。即:在中,是切线,是割线 3、割线定理:从圆外一点引圆的两条割线,这一点到每条割线及圆的交点的两条线段长的积相等(如右图)。即:在中,、是割线 考点十四、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分考点十五、圆的公切线两圆公切线长的计算公式:(1)公切线长:中,;(2)外公切
8、线长:是半径之差; 内公切线长:是半径之和 考点十六、三角形的内切圆和外接圆 1、三角形的内切圆及三角形的各边都相切的圆叫做三角形的内切圆。2、三角形的内心三角形的内切圆的圆心是三角形的三条内角平分线的交点,它叫做三角形的内心。考点十七、圆和圆的位置关系 1、圆和圆的位置关系假如两个圆没有公共点,那么就说这两个圆相离,相离分为外离和内含两种。假如两个圆只有一个公共点,那么就说这两个圆相切,相切分为外切和内切两种。假如两个圆有两个公共点,那么就说这两个圆相交。2、圆心距两圆圆心的间隔 叫做两圆的圆心距。3、圆和圆位置关系的性质及断定设两圆的半径分别为R和r,圆心距为d,那么两圆外离dR+r两圆外
9、切d=R+r两圆相交R-rdr)两圆内含dr)4、两圆相切、相交的重要性质假如两圆相切,那么切点肯定在连心线上,它们是轴对称图形,对称轴是两圆的连心线;相交的两个圆的连心线垂直平分两圆的公共弦。考点十八、圆内正多边形的计算1、正多边形的定义各边相等,各角也相等的多边形叫做正多边形。2、正多边形和圆的关系只要把一个圆分成相等的一些弧,就可以做出这个圆的内接正多边形,这个圆就是这个正多边形的外接圆。3、正三角形 在中是正三角形,有关计算在中进展:;4、正四边形同理,四边形的有关计算在中进展,:5、正六边形同理,六边形的有关计算在中进展,.考点十九、及正多边形有关的概念 1、正多边形的中心正多边形的
10、外接圆的圆心叫做这个正多边形的中心。2、正多边形的半径正多边形的外接圆的半径叫做这个正多边形的半径。3、正多边形的边心距正多边形的中心到正多边形一边的间隔 叫做这个正多边形的边心距。4、中心角正多边形的每一边所对的外接圆的圆心角叫做这个正多边形的中心角。考点二十、正多边形的对称性 1、正多边形的轴对称性正多边形都是轴对称图形。一个正n边形共有n条对称轴,每条对称轴都通过正n边形的中心。2、正多边形的中心对称性边数为偶数的正多边形是中心对称图形,它的对称中心是正多边形的中心。3、正多边形的画法先用量角器或尺规等分圆,再做正多边形。考点二十一、弧长和扇形面积 1、弧长公式n的圆心角所对的弧长l的计
11、算公式为2、扇形面积公式其中n是扇形的圆心角度数,R是扇形的半径,l是扇形的弧长。3、圆锥的侧面积其中l是圆锥的母线长,r是圆锥的地面半径。考点二十二、内切圆及有关计算。(1)三角形内切圆的圆心是三个内角平分线的交点,它到三边的间隔 相等。(2)ABC中,C=90,AC=b,BC=a,AB=c,则内切圆的半径r= 。 B OA D(3)SABC=,其中a,b,c是边长,r是内切圆的半径。(4)弦切角:角的顶点在圆周上,角的一边是圆的切线,另一边是圆的弦。 如图,BC切O于点B,AB为弦,ABC叫弦切角,ABC=D。 C 课堂作业1如图5112,AB是O的直径,弦CDAB,垂足为M,下列结论不成
12、立的是()ACMDM B. CACDADC DOMMD图51122如图5113,AB,CD是O的两条弦,连接AD,BC,若BAD60,则BCD的度数为()图5113A40 B50 C60 D703如图5114,已知AB,CD是O的两条直径,ABC30,那么BAD() 图5114A45 B. 60 C90 D. 304已知:如图5115,OA,OB是O的两条半径,且OAOB,点C在O上,则ACB的度数为()A45 B35 C25 D20图51155如图5116,已知BD是O的直径,点A,C在O上,AOB60,则BDC的度数是()图5116A20 B25 C30 D406如图5117,AB是O的直
13、径,点C在O上,若A40,则B的度数为()图5117A80 B60 C50 D407如图5118,若AB是O的直径,CD是O的弦,ABD55,则BCD的度数为() A35 B45 C55 D75图51188如图5119,点A,B,C在圆O上,A60,则BOC_度图51199如图5120,已知OCB20,则A_度图512010如图5121,四边形ABCD是圆的内接四边形,E是BC延长线上一点,若BAD105,则DCE的大小是()图5121A115 B105 C100 D9511如图5122,C过原点,且及两坐标轴分别交于点A,B,点A的坐标为(0,3),M是第三象限内上一点,BMO120,则C的
14、半径长为()A6 B5 C3 D3 图512212如图5123,AB为O的直径,弦CDAB于点E,已知CD12,EB2,则O的直径为()图5123A. 8 B. 10 C16 D2013如图5124,在半径为5的O中,弦AB6,点C是优弧上一点(不及A,B重合),则cosC的值为_图5124三级训练14如图5126,AB是O的直径,AC是弦,ODAC于点D,过点A作O的切线AP,AP及OD的延长线交于点P,连接PC,BC.图5126(1)猜测:线段OD及BC有何数量和位置关系,并证明你的结论;(2)求证:PC是O的切线 15(2012年广东梅州)如图5125,AC是O的直径,弦BD交AC于点E
15、.(1)求证:ADEBCE;(2)假如AD2AEAC,求证:CDCB.图5125 课 后 作 业1若O的半径为4 cm,点A到圆心O的间隔 为3 cm,那么点A及O的位置关系是()A点A在圆内 B点A在圆上 C点A在圆外 D不能确定2如图5139,在RtABC中,C90,AC6,AB10,CD是斜边AB上的中线,以AC为直径作O,设线段CD的中点为P,则点P及O的位置关系是点P()A在O内 B在O上 C在O外 D无法确定图51393已知O的半径为2,直线l上有一点P满意PO2,则直线l及O的位置关系是()A相切 B相离 C相离或相切 D相切或相交4在平面直角坐标系xOy中,以点(3,4)为圆心
16、,4为半径的圆()A. 及x轴相交,及y轴相切 B. 及x轴相离,及y轴相交C. 及x轴相切,及y轴相交 D. 及x轴相切,及y轴相离5如图5140,正三角形的内切圆半径为1,那么这个正三角形的边长为()图5140A2 B3 C. D2 6如图5141,O1,O2相内切于点A,其半径分别是8和4,将O2沿直线O1O2平移至两圆相外切时,则点O2挪动的长度是()图5141A4 B8 C16 D8或167已知O的半径为r,圆心O到直线l的间隔 为d,当dr时,直线l及O的位置关系是()A相交 B相切 C相离 D以上都不对8已知O的面积为9 cm2,若点O到直线的间隔 为 cm,则直线及O的位置关系
17、是()A相交 B相切 C相离 D无法确定9如图5142,圆周角BAC55,分别过B,C两点作O的切线,两切线相交于点P,则BPC_.图514210已知直线l及O相切,若圆心O到直线l的间隔 是5,则O的半径是_11如图5143,AB为O的直径,EF切O于点D,过点B作BHEF于点H,交O于点C,连接BD. X k B 1 . c o m图5143(1)求证:BD平分ABH;(2)假如AB12,BC8,求圆心O到BC的间隔 12如图5144,PA及O相切于点A,弦ABOP,垂足为C,OP及O相交于点D,已知OA2,OP4.图5144(1)求POA的度数;(2)计算弦AB的长13如图5145,点A,B,C分别是O上的点,B60,AC3,CD是O的直径,P是CD延长线上的一点,且APAC.图5145(1)求证:AP是O的切线;(2)求PD的长14如图5146,ABC中,ACB90,D是AB边上的一点,且A2DCB.E是BC边上的一点,以EC为直径的O经过点D.图5146(1)求证:AB是O的切线;(2)若CD的弦心距为1,BEEO,求BD的长15如图5147,AB是O的直径,C,D是O上的点,CDB20,过点C作O的切线交AB的延长线于点E,则E()图5147A40 B50 C60 D70