高中数学必修2第二章教案.docx

上传人:叶*** 文档编号:34927171 上传时间:2022-08-19 格式:DOCX 页数:29 大小:425.78KB
返回 下载 相关 举报
高中数学必修2第二章教案.docx_第1页
第1页 / 共29页
高中数学必修2第二章教案.docx_第2页
第2页 / 共29页
点击查看更多>>
资源描述

《高中数学必修2第二章教案.docx》由会员分享,可在线阅读,更多相关《高中数学必修2第二章教案.docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2.1.1 平 面二、教学重点、难点重点:1.平面的概念及表示; 2.平面的根本性质,留意他们的条件、结论、作用、图形语言及符号语言.难点:平面根本性质的驾驭及运用.视察并思索以下问题: 1.长方体由哪些根本元素构成答:点、线、面.2.视察长方体的面,说说它的特点?答:是平的.指出:长方体的面给我们以平面的印象;生活中常见的如黑板、平整的操场、桌面、安静的湖面等等,都给我们以平面的印象. (二)探究新知 1.平面含义 指出:以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的。平面是没有厚薄的,可以无限延长,这是平面最根本的属性常见的桌面,黑板面,安静的水面等都是平

2、面的部分形象;一个平面把空间分成两部分,一条直线把平面分成两部分. 2.平面的画法及表示 平面的画法:和学生一起,教师边说边画,学生跟着画. 在立体几何中,常用平行四边形表示平面,当平面程度放置时,通常把平行四边形的锐角画成,且横边长画成邻边长的两倍;画两个平面相交时,当一个平面的一部分被另一个平面遮住时,应把被遮住的部分画成虚线或不画. 平面的表示方法 平面通常用希腊字母、等表示,如平面、平面等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC、平面ABCD等. 3.点及平面的关系及其表示方法 指出:平面内有多数个点,平面可以看成点的集合. 点A在平面内,

3、记作: 点B在平面外,记作:想一想:点和平面的位置关系有几种4.平面的根本性质 思索:假如直线及平面有一个公共点P,直线是否在平面内假如直线及平面有两个公共点呢要让学生充分发表自己的见解. 视察理解:把一把直尺边缘上的随意两点放在桌边,可以看到,直尺的整个边缘就落在了桌面上. 得出结论: 公理1:假如一条直线上的两点在一个平面内,那么这条直线在此平面内 (教师引导学生阅读教材P42前几行相关内容,并加以解析) 符号表示为 公理1作用:推断直线是否在平面内 师:生活中,我们看到三脚架可以坚固地支撑照相机或测量用的平板仪等等 引导学生归纳出公理2 公理2:过不在一条直线上的三点,有且只有一个平面.

4、 符号表示为:A、B、C三点不共线=有且只有一个平面 使A、B、C 公理2作用:确定一个平面的根据. 补充3个推论: 推论1:经过一条直线及直线外一点,有且只有一个平面. 推论2:经过两条平行直线,有且只有一个平面. 推论3:经过两条相交直线,有且只有一个平面. 教师用正(长)方形模型,让学生理解两个平面的交线的含义. 引导学生阅读P42的思索题,从而归纳出公理3 公理3:假如两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 符号表示为:P=L,且PL 公理3作用:断定两个平面是否相交的根据 2.1.2空间中直线及直线之间的位置关系二、教学重、难点:1重点: (1)空间中两

5、条直线的位置关系的断定;(2)理解并驾驭公理4.2难点: 理解异面直线的概念、画法.四、教学过程:(一)复习引入 1. 前面我们已学习了平面的概念及其根本性质.回忆一下,怎样确定一个平面呢?( 公理3及其三个推论 )2 .在一个平面内,两直线有哪几种位置关系呢?在空间中呢?(二)新课推动1.空间中两条直线的位置关系以学生身边的实例引出空间两条直线位置关系问题共 面 直 线 相交:同一平面内,有且只有一个公共点平行:同一平面内,没有公共点异 面 直 线:不同在任何一个平面内,没有公共点2.异面直线(1)概念:不同在任何一个平面内的两条直线.(2)推断:下列各图中直线l及m是异面直线吗 让学生直观

6、推断异面直线,既加深了对概念的理解,又可引出异面直线的画法,还为下面的辨析作好铺垫.(3)画法:用一个或两个平面衬托 (4)辨析空间中没有公共点的两条直线是异面直线.分别在两个不同平面内的两条直线是异面直线.不同在某一平面内的两条直线是异面直线.平面内的一条直线和平面外的一条直线是异面直线. 既不相交,又不平行的两条直线是异面直线 .(5)结合实例小结推断异面直线的关键 例1:在正方体中,哪些棱所在的直线及成异面直线 合作探究如右图所示是一个正方体的绽开图,假如将它复原成正方体,那么AB、CD、EF、GH这四条线段所在的直线是异面直线的有几对?让学生根据异面直线的定义推断在几何体上的具有异面直

7、线位置关系的两条直线.培育学生的空间想象实力,加深对异面直线概念的理解.推断异面直线的关键:既不相交,又不平行.3公理4的教学思索:在同一平面内,假如两条直线都及第三条直线平行,那么这两条直线平行。空间中,假如两条直线都及第三条直线平行,是否也有类似的规律(2)视察:如图2.1.2-2,长方体中,AA1, AA1,那么及平行吗公理4:平行于同一条直线的两条直线互相平行。符号表示为:设a、b、c是三条直线 注:公理4本质上是说平行具有传递性,在平面、空间此性质都适用;公理4作用:推断空间两条直线平行的根据. 讲解例2,让学生驾驭公理4的运用例2:如图在空间四边形ABCD中,E、F、G、H分别是A

8、B、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形. 考虑到学生第一次接触空间四边形,先结自制模型简洁介绍什么叫空间四边形,再分析如何证明)分析:如何断定一个四边形是平行四边形? 怎样证明EH FG?证明关键是什么?提问:有没有其它证明方法呢?(EFHG,且EF=HG)变式练习:(1)在例2中, 假如再加上条件,那么四边形是什么图形(2) 把条件改为: E、H分别是边AB、AD的中点,F、G分别是边CB、CD上的点,且 则四边形是什么图形为什么(四)小结(1)空间中两直线有何位置关系?(平行、相交、异面)(2)怎样推断两直线是异面直线?(推断关键:既不平行又不相交)(3)什么是平行

9、公理它的作用是什么 (平行同一条直线的两条直线互相平行, 作用:推断两直线平行它将空间平行问题转化为平面内的平行问题)(五)作业(1) P56习题2.1A组第6题(2) 在正方体中,及对角线成异面直线的棱共有几条 2.1.3 空间中直线及平面 2.1.4 平面及平面之间的位置关系二、教学重点、难点重点:空间直线及平面、平面及平面之间的位置关系。难点:用图形表达直线及平面、平面及平面的位置关系。三、教学设计空间中直线及平面有多少种位置关系? (二)研探新知1引导学生视察、思索身边的实物,从而直观、精确地归纳出直线及平面有三种位置关系:(1)直线在平面内 有多数个公共点(2)直线及平面相交 有且只

10、有一个公共点(3)直线在平面平行 没有公共点指出:直线及平面相交或平行的状况统称为直线在平面外,可用a 来表示a a=A a例4: 加深了学生对这几种位置关系的理解.2引导学生对生活实例以及对长方体模型的视察、思索,精确归纳出两个平面之间有两种位置关系:(1)两个平面平行 没有公共点(2)两个平面相交 有且只有一条公共直线用类比的方法,学生很快地理解及驾驭了新内容,这两种位置关系用图形表示为L = L指出:画两个互相平行的平面时,要留意使表示平面的两个平行四边形的对应边平行.2.2.1直线及平面平行的断定二、教学的重点及难点:教学重点:通过直观感知、操作确认,归纳出直线和平面平行的断定及其应用

11、。教学难点:直线和平面平行的断定定理的探究过程及其应用。 三、教学过程设计:(二)温故知新直线及平面平行的定义是什么?假如一条直线和一个平面没有公共点,那么我们就说这条直线及这个平面平行.这里所说的直线是向两方无限延长的,平面是向四周无限延展的.那么,直线及平面的位置关系有几种?直线及平面的位置关系有三种:直线在平面内有多数个公共点;直线及平面相交有且只有一个公共点;直线及平面平行没有公共点.问:我们把直线及平面相交或直线及平面平行的状况统称为直线在平面外。今后凡谈到直线在平面外,则有两种状况:直线及平面相交,直线及平面平行。直线及平面的三种位置关系的图形语言、符号语言各是怎样的?(三)讲解新

12、课直线在平面外,是不是可以断定呢?直线及平面平行将如何断定呢?a直线无限延长,平面无限延展,如何保证直线及平面有没有公共点呢?请同学们将一本书平放在桌面上,翻动书的硬皮封面,封面边缘AB所在直线及桌面所在平面具有什么样的位置关系?如图:直线a及平面平行吗?若内有直线b及a平行,那么及a的位置关系如何?是否可以保证直线a及平面平行?断定定理告知我们直线及平面平行应具备几个条件?符号语言表示: 这个定理可以简述为:“线线平行,则线面平行”,不过要留意,前面的线线有什么区分?例1 求证:空间四边形相邻两边中点的连线平行于经过另外两边所在的平面. 已知:如图,空间四边形ABCD中,E,F分别是AB,A

13、D的中点.求证:EF/平面BCD.证明:连接BD,则AE=EB,AF=FB 所以 EF/BD因为 EF平面BCD,BD平面BCD 由直线及平面平行的断定定理得 EF/平面BCD 2.2.2 平面及平面平行的断定二、教学重、难点:1重点:平面和平面平行的断定定理的探究过程及应用。2难点:平面和平面平行的断定定理的探究发觉及其应用。三、教学过程:(一)创设情景 1.你知道建筑师是如何检验屋顶平面是及程度面平行的吗?2.三角板的一条边所在直线及地面平行,这个三角板所在平面及地面平行吗?三角板的两条边所在直线及地面平行,状况又如何呢?(二)温故知新线面平行的断定方法有几种?(1)定义法:若直线及平面无

14、公共点,则直线及平面平行.(2)面面平行定义的推论:若两平面平行,则其中一个平面内的直线及另一平面平行(3)断定定理:证明面外直线及面内直线平行(三)探求新知平面及平面平行的定义是什么?如何推断两平面平行?假如两个平面平行,那么其中一个平面内的直线及另一个平面关系如何?为什么?若一个平面内全部直线都和另一个平面平行,那么这两个平面会平行吗?由此将断定两个平面平行的问题可以转化为线面平行的问题来解决,可是最少须要几条线及面平行呢?平面内有一条直线及平面平行,、平行吗?请举例说明.如右图,借助长方体模型,我们可以看出,平面中直线 相交.若平面内有两条直线a、b都平行于平面,能保证吗?如上图,借助长

15、方体模型,在平面内,有一条及平行的直线EF,明显及EF都平行及平面,但这两条平行直线所在的平面及平面相交. 如下图,平面内有两条相交直线及平面平行,状况如何?一般地,我们有如下的断定平面平行的定理:假如一个平面内的两条交直线及另一个平面平行,则这两个平面平行.以上是两个平面平行的文字语言表述,你能写出定理的符号语言吗?若.利用断定定理证明两个平面平行,必需具备哪些条件?(1)由两条直线平行及另一个平面,(2)这两条直线必需相交.从转化的角度相识该定理就是:线线相交,线面相交面面平行.(四)拓展应用例1. 已知正方体ABCD-,求证:平面/平面.证明:因为ABCD-为正方体,所以 ,又,所以 ,

16、所以为平行四边形.所以 .又,由直线及平面的断定定理得,同理,又,所以平面.拓展1.已知正方体ABCD-A1B1C1D1,M、N分别为A1A、CC1的中点 .求证:平面NBD平面MB1D1.拓展2.已知正方体ABCD-A1B1C1D1,P、Q、R分别为A1A、AB、AD的中点 .求证:平面PQR平面CB1D1.例2.点P是ABC所在平面外一点,M、N、G分别是PBC、PCA、PAB的重心. 求证:平面MNG/平面ABC分析:连结PM,PN,PG则PM:PD=PN:PE=PG:PF故MNDE,MGEF2.2.3平面及平面平行的断定 二、教学重点、难点、疑点及解决方法1教学重点:驾驭两个平面平行的

17、性质及其应用;驾驭两平行平面间的间隔 的概念,会求两个平行平面间的间隔 2教学难点:驾驭两个平行平面的性质及其应用三 、教学设计(一)复习两个平面的位置关系及两个平面平行的断定两个平面的位置关系有哪几种?两个平面平行的断定方法有哪几种?(二)两个平面平行的性质根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面因此,在解决实际问题时,经常把面面平行转化为线面平行或线线平行这个结论可作为两个平面平行的性质1: 则.1两个平面平行的性质定理假如两个平行平面同时和第三个平面相交,那么它们的交线平行已知:,=a,=b求证:ab干脆证法: ,及没有公共点又 ab

18、这个结论可作为性质2:若,a,b,则ab 2例题例2 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面已知:,A求证:证明直线及平面垂直的方法有几种?方法一,证明直线及平面内的任何一条直线都垂直;方法二,证明直线及平面内两条相交的直线垂直;方法三,证明直线的一条平行线及平面垂直我们可以试着用第一种方法来证明证明:在平面内任取一条直线b,平面是经过点A及直线b的平面,设a因为直线b是平面内的随意一条直线,所以l这个例题的结论可及定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线”联络起来记忆,它也可作为性质3:若,l,则l3两个平行平面的公垂线、公垂线段和间隔 及两个

19、平行平面,同时垂直的直线L叫做这两个平行平面,的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段如图假如AA、BB都是它们的公垂线段,那么AABB,根据两个平面平行的性质定理有ABAB,所以四边形ABBA是平行四边形,AABB由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性及两平行线间的间隔 定义 相类似,我们把公垂线段的长度叫做两个平行平面的间隔 两个平行平面间间隔 本质上也是点到面或两点间的间隔 ,求值最终也是通过解三角形求得练习.夹在两个平行平面间的平行线段相等已知:如图1116,ABCD,A,C,B,D求证:ABCD证明:ABCD,过AB、CD的平

20、面及平面和分别交于AC和BD,BDAC四边形ABCD是平行四边形,ABCD这个练习的结论可作为性质4:夹在两个平行平面间的平行线段相等2.2.4平面及平面平行的性质二、教学重、难点:1重点:两个平面平行的性质定理的探究过程及应用.2难点:两个平面平行的性质定理的探究发觉及其应用.三、教学过程:(一)温故知新1. 两个平面的位置关系?2. 面面平行的断定方法:(1)定义法:若两平面无公共点,则两平面平行.(2)断定定理:假如一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行.(二)创设情景两个平面平行,那么其中一个平面内的直线及另一平面有什么样的关系?通过分析可以发觉,若平面和平面

21、平行,则两面无公共点,那么就意味着平面内任始终线a和平面也无公共点,即直线a和平面平行.用语言表述就是:假如两个平面平行,那么其中一个平面内的直线平行及另一个平面.用式子可表示为:。两个平面平行,那么其中一个平面内的直线及另一平面内的直线有何关系?(三)探求新知如图,设,我们讨论两条交线的位置关系。因为,所以a,b内有公共点,而a,b又同在平面内,于是有a/b.两个平面平行的性质定理:假如两个平行平面同时和第三个平面相交,那么它们的交线平行.用符号表示为:(五)归纳整理2.3.1 直线及平面垂直的断定二、教学重点、难点重点:(1)直线及平面垂直的定义和断定定理; (2)直线和平面所成的角.难点

22、:直线及平面垂直断定定理的探究.三、教学过程(一)新课导入问题:直线和平面平行的断定方法有几种?(二)探究新知1.直线和平面垂直的定义、画法假如直线l及平面内的随意一条直线都垂直,我们说直线l及平面互相垂直,记作l.直线l叫做平面的垂线,平面叫做直线l的垂面.直线及平面垂直时,它们惟一的公共点P叫做垂足.画直线及平面垂直时,通常把直线画成及表不平面的平行四边形的一边垂直,如图. 2.直线和平面垂直的断定(1)试验 如图,过ABC的顶点A翻折纸片,得到折痕AD,将翻折后的纸片竖起放置在桌面上(BD、DC及桌面接触).折痕AD及桌面垂直吗?如何翻折才能使折痕AD及桌面所在平面垂直?3直线及平面垂直

23、的断定定理: 一条直线及一个平面内两条相交直线都垂直,则该直线及此平面垂直.思索:能否将直线及平面垂直的断定定理中的“两条相交直线”改为一条直线或两条平行直线?例1 如图,已知ab,a,求证:b.证明:在平面内作两条相交直线m、n.因为直线a,根据直线及平面垂直的定义知am,an.又因为ba,所以bm,bn.又因为,m、n是两条相交直线,b.4.直线和平面所成的角如图,一条直线PA和一个平面相交,但不及这个平面垂直,这条直线叫做这个平面的斜线,斜线的平面的交点A叫做斜足.过斜线上斜足以外的一点向平面引垂线PO,过垂足O和斜足A的直线AO叫做斜线在这个平面上的射影.平面的一条斜线和它在平面上的射

24、影所成的锐角,叫做这条直线和这个平面所成的角.一条直线垂直于平面,我们说它们所成的角是直角;一条直线和平面平行,或在平面内,我们说它们所成的角是0的角.例2 如图,在正方体ABCD A1B1C1D1中,求A1B和平面A1B1CD所成的角.分析:找出直线A1B在平面A1B1CD内的射影,就可以求出A1B和平面A1B1CD所成的角.解:连结BC1交B1C于点O,连结A1O.设正方体的棱长为a,因为A1B1B1C1, A1B1B1B,所以A1B1平面BCC1B1.所以A1B1BC1.又因为BC1B1C,所以B1C平面A1B1CD.所以A1O为斜线A1B在平面A1B1CD内的射影,BA1O为A1B及平

25、面A1B1CD所成的角.在RtA1BO中, ,所以, BA1O = 30 因此,直线A1B和平面A1B1CD所成的角为30.四、课堂练习1如图,在三棱锥VABC中,VA = VC,AB = BC,求证:VBAC.2过ABC所在平面外一点P,作PO,垂足为O,连接PA,PB,PC.(1)若PA= PB = PC,C =90,则点O是AB边的 心.(2)若PA = PB =PC,则点O是ABC的 心.(3)若P APB,PBPC,PBP A,则点O是ABC的 . 心.3两条直线和一个平面所成的角相等,这两条直线肯定平行吗?4如图,直四棱柱ABCD ABCD(侧棱及底面垂直的棱柱称为直棱柱)中,底面

26、四边形ABCD满意什么条件时,ACBD?五、归纳总结1直线和平面垂直的定义断定2直线和平面所成的角定义及解答步骤、完善.3线线垂直线面垂直2.3.2平面及平面垂直的断定;二、教学重、难点重点:平面及平面垂直的断定.难点:找出二面角的平面角.三、教学过程:(一)创设情景,提醒课题问题1:平面几何中“角”是怎样定义的?问题2:在立体几何中,“异面直线所成的角”、“直线和平面所成的角”又是怎样定义的?它们有什么共同的特征?在消费理论中,有很多问题要涉及到两个平面相交所成的角的情形,你能举出这个问题的一些例子吗?如修水坝、放射人造卫星等,而这样的角有何特点,该如何表示呢? (二)研探新知1、二面角的有

27、关概念展示一张纸面,并对折让学生视察其状,然后引导学生用数学思维思索,并对以上问题类比,归纳出二面角的概念及记法表示(如下表所示)角二面角图形 A 边 顶点 O B 边A 棱 lB 定义从平面内一点动身的两条射线(半直线)所组成的图形从空间始终线动身的两个半平面所组成的图形构成射线 点(顶点)一 射线半平面 一 线(棱)一 半平面表示AOB二面角-l-或-AB-2、二面角的度量二面角定义反映了两个平面相交的位置关系,如我们常说“把门开大一些”,是指二面角大一些,那我们应如何度量二两角的大小呢?二面角中在其棱上任取一点为顶点,在两个半平面内各作一射线,如图探究二面角大小的度量方法二面角的平面角.

28、BAO特殊指出:(1)表示二面角的平面角时,要求OAL ,OBL;(2)AOB的大小及点O在L上位置无关;(3)当二面角的平面角是直角时,这两个平面的位置关系怎样?视察,类比得两个平面互相垂直的断定定理:一个平面过另一个平面的垂线,则这两个平面垂直。 (三)实际应用,稳固深化 例1、设AB是圆O的直径,PA垂直于圆O所在平面,C是圆周上的随意点,求证:面PAC 面PBC.例2、已知直线PA垂直正方形ABCD所在的平面,A为垂足。求证:平面PAC平面PBD.说明:这两题都涉及线面垂直、面面垂直的性质和断定,其中证明BC平面PAC和BD平面PAC是关键从解题方法上说,由于“线线垂直”、“线面垂直”

29、及“面面垂直”之间可以互相转化,因此整个解题过程始终沿着“线线垂直线面垂直面面垂直”转化途径进展(五)小结归纳,整体相识(1)二面角以及平面角的有关概念;(2)两个平面垂直的断定定理的内容,它及直线及平面垂直的断定定理有何关系?2.3.3直线及平面垂直的性质二、教学重、难点重点:直线和平面垂直的性质定理和推论的内容和简洁应用.难点:直线和平面垂直的性质定理和推论的证明,等价转化思想的浸透.三、教学过程复习引入推断直线和平面垂直的方法有几种?各断定方法在何种条件或情形下方可娴熟运用?若能确定直线及平面内随意始终线垂直,则运用定义说明.若能说明所证直线和平面内的一条直线平行,则可运用例题结论说明.

30、若能说明直线和平面内两相交直线垂直,则可运用断定定理去完成断定.在空间,过一点,有几条直线及已知平面垂直?过一点,有几个平面及已知直线垂直?推断下列命题是否正确:1.在平面中,垂直于同始终线的两条直线互相平行.2.在空间中,垂直于同始终线的两条直线互相平行.3.垂直于同一平面的两直线互相平行.4.垂直于同始终线的两平面互相平行.这节课我们来共同讨论直线和平面垂直,则其应具备的性质是什么?创设情景如图,长方体ABCDABCD中,棱A A、B B、C C、D D所在直线都垂直于平面ABCD,它们之间具有什么位置关系?(三)讲解新课例1 已知:a,b。求证:ba分析:此问题是在a,b的条件下,讨论a

31、和b是否平行,若从正面去证明ba,则较困难。而利用反证法来完成此题,相对较为简洁,但难在协助线的作出,这也是立体几何开场的这部分较难的一个证明.证明:假定b不平行于a,设, 是经过点O的两直线a平行的直线., a, 即经过同一点O的两直线b , 都及垂直,这是不行能的,因此ba.得到结论:直线和平面垂直的性质定理:假如两条直线同垂直于一个平面,那么这两条直线平行,也可简记为线面垂直,线线平行.例2.已知,求证.(四)课堂练习课本79页第1、2题.拓展练习:设直线a,b分别在正方体ABCDABCD中两个不同的平面内,欲使ba,则a、b应满意什么条件?分析:结合两直线平行的断定定理,考虑a、b满意

32、的条件。解:a、b满意下面条件中的任何一个,都能使ba()a、b同垂直于正方体的一个面.()a、b分别在正方体两个相对的面内且共面.()a、b平行于同一条棱.()、分别为BC、C、A、的中点,所在直线为a,所在直线为b.(五)课堂小结直线和平面垂直的性质定理,定理的证明用到反证法,证明几何问题常规的方法有两种:干脆证法和间接证法。干脆证法长根据定义、定理、公理,并适当引用平面几何学问;用干脆法证明比拟困难时,我们可以考虑间接证法,反证法就是一种间接证法。关于直线及平面垂直的性质定理的证明,教材采纳反证法,学生理解上会有肯定的困难,教学时应留意引导学生理解反证法的反设、归谬,进而得到要证的结论。

33、2.3.4 平面及平面垂直的性质二、教学重、难点重点:理解驾驭面面垂直的性质定理和内容和推导。难点:运用性质定理解决实际问题。三、教学过程(一) 复习提问1.线面垂直断定定理:假如一条直线和一个平面内两条相交直线都垂直,则这条直线垂直于这个平面.2.面面垂直断定定理:假如一个平面经过另一个平面的一条垂线,则这两个平面互相垂直.(二)引入新课今日我们要学习“两个平面垂直的性质”,先来看下面问题:已知黑板面及地面垂直,你能在黑板面内找到一条直线及地面平行、相交或垂直吗这样的直线分别有什么性质?试说明理由!(三)探求新知例1.已知:面面,= a, AB, ABa于 B,求证:AB分析:要证明直线垂直

34、于平面,须证明直线垂直于平面内两条相交直线,而题中条件已有一条,故可过该直线作协助线. 证明:在平面内过B作BEa,又ABa,ABE为a的二面角,又,ABE = 90 , ABBE 又ABa, BEa = B, AB面面垂直的性质定理:两平面垂直,则一个平面内垂直于交线的直线及另一个平面垂直.用符号语言表述: 若,=a, AB, ABa于 B,则 AB.从面面垂直的性质定理可知,要证明线垂直于面可通过面面垂直来证明,而前面我们知道,面面垂直也可通过线面垂直来证明.(四)拓展应用例2.求证:假如两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.例2如图,已知平面

35、 、, =AB, 直线a, a,试推断直线a及平面的位置关系(求证:a )分析:因为直线及平面有在平面内、相交、平行三种关系)解:在内作垂直于 、交线AB的直线b, b a a b , 又a a (五)课堂练习: 练习 第1、2题;习题A组 第1题1.长方体ABCDABCD中,推断下面结论的正误.(1)平面ADDA平面ABCD (2) DD 面ABCD (3)AD 面ABCD 2.空间四边形ABCD中,ABD及BCD都为正三角形,面ABD面BCD,试在平面BCD内找一点,使AE面BCD,亲说明理由解:在ABD中,AB=AD,取BD的中点E,连结AE,则AE为BD的中线AEBD 又面BCD面ABD=BD, 面ABD面BCD AE面BCD(六)课堂小结: 1. 面面垂直断定定理.2. 面面垂直的性质定理. 利用性质定理解决问题.(七)布置作业:习题A组第2、5题 ;习题B组第3题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁