《2016年贵州省黔西南州中考数学试卷含答案.docx》由会员分享,可在线阅读,更多相关《2016年贵州省黔西南州中考数学试卷含答案.docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、2016年贵州省黔西南州中考数学试卷一、选择题:每小题4分,共40分1计算42的结果等于()A8B16C16D82如图,ABC的顶点均在O上,若A=36,则BOC的度数为()A18B36C60D723如图,ABCD,CBDE,若B=72,则D的度数为()A36B72C108D1184如图,点B、F、C、E在一条直线上,ABED,ACFD,那么添加下列一个条件后,仍无法断定ABCDEF的是()AAB=DEBAC=DFCA=DDBF=EC5如图,在ABC中,点D在AB上,BD=2AD,DEBC交AC于E,则下列结论不正确的是()ABC=3DEBCADEABCDSADE=SABC6甲、乙、丙三人站成
2、一排拍照,则甲站在中间的概率是()ABCD7某校在国学文化进校园活动中,随机统计50名学生一周的课外阅读时间如表所示,这组数据的众数与中位数分别是()学生数(人)5814194时间(小时)678910A14,9B9,9C9,8D8,98如图,是由几个完全一样的小正方体搭建的几何体,它的左视图是()ABCD9如图,反比例函数y=的图象经过矩形OABC的边AB的中点D,则矩形OABC的面积为()A2B4C5D810如图,矩形ABCD绕点B逆时针旋转30后得到矩形A1BC1D1,C1D1与AD交于点M,延长DA交A1D1于F,若AB=1,BC=,则AF的长度为()A2BCD1二、填空题:每小题3分,
3、共30分11计算:(2ab)2=120.0000156用科学记数法表示为13分解因式:x34x=14一个多边形的内角与为1080,则这个多边形的边数是15函数y=中,自变量x的取值范围为16 如图,AB是O的直径,CD为弦,CDAB于E,若CD=6,BE=1,则O的直径为17关于x的两个方程x2x6=0与有一个解一样,则m=18已知O1与O2的半径分别为m、n,且m、n满意+(n2)2=0,圆心距O1O2=,则两圆的位置关系为19如图,小明购置一种笔记本所付款金额y(元)与购置量x(本)之间的函数图象由线段OB与射线BE组成,则一次购置8个笔记本比分8次购置每次购置1个可节约元20阅读材料并解
4、决问题:求1+2+22+23+22014的值,令S=1+2+22+23+22014 等式两边同时乘以2,则2S=2+22+23+22014+22015 两式相减:得2SS=220151 所以,S=220151根据以上计算方法,计算1+3+32+33+32015=三、本题共12分21(1)计算:|2cos45()1+(tan80)0+(2)化简:(2)2x,再代入一个适宜的x求值四本题共12分22如图,点A是O直径BD延长线上的一点,C在O上,AC=BC,AD=CD(1)求证:AC是O的切线;(2)若O的半径为2,求ABC的面积五本题共14分232016年黔西南州教化局组织全州中小学生参与全省平
5、安学问网络竞赛,在全州平安学问竞赛完毕后,通过网上查询,某校一名班主任对本班成果(成果取整数,满分100分)作了统计分析,绘制成如下频数分布表与频数分布直方图,请你根据图表供应的信息,解答下列问题:(1)频数分布表中a=,b=,c=(2)补全频数分布直方图(3)为了鼓励学生增加平安意识,班主任打算从超过90分的学生中选2人介绍学习阅历,那么获得100分的小亮与小华同时被选上的概率是多少?请用列表法或画树状图加以说明,并列出全部等可能结果频数分布表分组(分)频数频率50x 6020.0460x 7012a70x80b0.3680x 90140.2890x 100c0.08合计501六本题共14分
6、24我州某养殖场安排购置甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元,相关资料说明:甲、乙两种鱼苗的成活率为80%,90%(1)若购置这两种鱼苗共用去11000元,则甲、乙两种鱼苗各购置多少条?(2)若要使这批鱼苗的总成活率不低于85%,则乙种鱼苗至少购置多少条?(3)在(2)的条件下,应如何选购鱼苗,使购置鱼苗的总费用最低?最低费用是多少?七阅读材料题25求两个正整数的最大公约数是常见的数学问题,中国古代数学专著九章算术中便记载了求两个正整数最大公约数的一种方法更相减损术,术曰:“可半者半之,不行半者,副置分母、子之数,以少成多,更相减损,求其等也以等数约之”,意思是说,要
7、求两个正整数的最大公约数,先用较大的数减去较小的数,得到差,然后用减数与差中的较大数减去较小数,以此类推,当减数与差相等时,此时的差(或减数)即为这两个正整数的最大公约数例如:求91与56的最大公约数解:请用以上方法解决下列问题:(1)求108与45的最大公约数;(2)求三个数78、104、143的最大公约数八本题共16分26如图,二次函数y=x2+3x+m的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点(1)求m的值及C点坐标;(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由(3)
8、P为抛物线上一点,它关于直线BC的对称点为Q当四边形PBQC为菱形时,求点P的坐标;点P的横坐标为t(0t4),当t为何值时,四边形PBQC的面积最大,请说明理由2016年贵州省黔西南州中考数学试卷参考答案与试题解析一、选择题:每小题4分,共40分1【考点】有理数的乘方【分析】乘方就是求几个一样因数积的运算,42=(44)=16【解答】解:42=16故选:B【点评】本题考察有理数乘方的法则正数的任何次方都是正数;负数的奇次方为负,负数的偶次方为正;0的正整数次幂为02【考点】圆周角定理【分析】在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,由此可得出答案【解答】解:
9、由题意得BOC=2A=72故选D【点评】本题考察了圆周角定理,属于根底题,驾驭圆周角定理的内容是解答本题的关键3【考点】平行线的性质【分析】由平行线的性质得出C=B=72,D+C=180,即可求出结果【解答】解:ABCD,CBDE,B=72,C=B=72,D+C=180,D=18072=108;故选:C【点评】本题主要考察平行线的性质;娴熟驾驭平行线的性质是解决问题的关键4【考点】全等三角形的断定【分析】分别推断选项所添加的条件,根据三角形的断定定理:SSS、SAS、AAS进展推断即可【解答】解:解:选项A、添加AB=DE可用AAS进展断定,故本选项错误;选项B、添加AC=DF可用AAS进展断
10、定,故本选项错误;选项C、添加A=D不能断定ABCDEF,故本选项正确;选项D、添加BF=EC可得出BC=EF,然后可用ASA进展断定,故本选项错误故选C【点评】本题主要考察对全等三角形的断定,平行线的性质等学问点的理解与驾驭,娴熟地运用全等三角形的断定定理进展证明是解此题的关键,是一个开放型的题目,比拟典型5【考点】平行线分线段成比例【分析】根据平行线分线段成比例定理、相像三角形的性质解答即可【解答】解:BD=2AD,AB=3AD,DEBC,BC=3DE,A结论正确;DEBC,B结论正确;DEBC,ADEABC,C结论正确;DEBC,AB=3AD,SADE=SABC,D结论错误,故选:D【点
11、评】本题考察的是平行线分线段成比例定理与相像三角形的性质,敏捷运用平行线分线段成比例定理、驾驭相像三角形的面积比等于相像比的平方是解题的关键6【考点】列表法与树状图法【分析】画树状图展示全部6种等可能的结果数,再找出甲站在中间的结果数,然后根据概率公式求解【解答】解:画树状图为:共有6种等可能的结果数,其中甲站在中间的结果数为2,所以甲站在中间的概率=故选:B【点评】本题考察了列表法与树状图法:通过列表法或树状图法展示全部等可能的结果求出n,再从中选出符合事务A或B的结果数目m,然后根据概率公式求出事务A或B的概率7【考点】众数;统计表;中位数【分析】根据众数与中位数的定义求解即可【解答】解:
12、时间为9小时的人数最多为19人数,众数为9将这组数据根据由大到小的依次排列,第25个与第26个数据的均为8,中位数为8故选:C【点评】本题主要考察的是众数与中位数的定义,明确表格中数据的意义是解题的关键8【考点】简洁组合体的三视图【分析】左视图从左到右说出每一行小正方形的个数与位置即可【解答】解:左视图从左到右有三列,左边一列有2个正方体,中间一列三个,右边有一个正方体,故选D【点评】此题主要考察了画三视图的学问;用到的学问点为:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形9【考点】反比例函数系数k的几何意义【分析】由反比例函数的系数k的几何意义可知:OAAD=2,然后可求
13、得OAAB的值,从而可求得矩形OABC的面积【解答】解:y=,OAOD=2D是AB的中点,AB=2AD矩形的面积=OAAB=2ADOA=22=4故选:B【点评】本题主要考察的是反比例函数k的几何意义,驾驭反比例函数系数k的几何意义是解题的关键10【考点】旋转的性质;矩形的性质【分析】先求出CBD,根据旋转角,推断出点C1在矩形对角线BD上,求出BD,再求出DBF,从而推断出DF=BD,即可【解答】解:连接BD,如图所示:在矩形ABCD中,C=90,CD=AB=1,在RtBCD中,CD=1,BC=,tanCBD=,BD=2,CBD=30,ABD=60,由旋转得,CBC1=ABA1=30,点C1在
14、BD上,连接BF,由旋转得,AB=A1B,矩形A1BC1D1是矩形ABCD旋转所得,BA1F=BAF=90,AF=AF,A1BFABF,A1BF=ABF,ABA1=30,ABF=ABA1=15,ABD=60,DBF=75,ADBC,ADB=CBD=30,BFD=75,DF=BD=2,AF=DFAD=2,故选:A【点评】本题考察了旋转的性质、矩形的性质、全等三角形的断定与性质、等腰三角形的断定、三角函数;娴熟驾驭旋转的性质与矩形的性质,并能进展推理计算是解决问题的关键二、填空题:每小题3分,共30分11【考点】幂的乘方与积的乘方【分析】干脆利用积的乘方运算法则以及幂的乘方运算法则求出答案【解答】
15、解:(2ab)2=4a2b2故答案为:4a2b2【点评】此题主要考察了积的乘方运算与幂的乘方运算,正确驾驭运算法则是解题关键12【考点】科学记数法表示较小的数【分析】肯定值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所运用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所确定【解答】解:0.0000156=1.56105,故答案为:1.56105【点评】本题考察用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所确定13【考点】提公因式法与公式法的综合运用【专题】因式分解【分
16、析】应先提取公因式x,再对余下的多项式利用平方差公式接着分解【解答】解:x34x,=x(x24),=x(x+2)(x2)故答案为:x(x+2)(x2)【点评】本题考察了提公因式法,公式法分解因式,提取公因式后利用平方差公式进展二次因式分解,分解因式肯定要彻底,直到不能再分解为止14【考点】多边形内角与外角【分析】n边形的内角与是(n2)180,假如已知多边形的边数,就可以得到一个关于边数的方程,解方程就可以求出多边形的边数【解答】解:根据n边形的内角与公式,得(n2)180=1080,解得n=8这个多边形的边数是8故答案为:8【点评】本题考察了多边形的内角与外角,熟记内角与公式与外角与定理并列
17、出方程是解题的关键根据多边形的内角与定理,求边数的问题就可以转化为解方程的问题来解决15【考点】函数自变量的取值范围【分析】根据二次根式有意义的条件就是被开方数大于或等于0,分式有意义的条件是分母不为0;可得关系式1x0,解不等式即可【解答】解:根据题意得:1x0,解可得x1;故答案为x1【点评】函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数为非负数16【考点】垂径定理【专题】计算题;推理填空题【分析】首先连接OD,并设OD=x,然后在ODE中,由勾股定理,求出OD
18、的长,即可求出O的直径为多少【解答】解:如图,AB是O的直径,而且CDAB于E,DE=CE=122=6,在RtODE中,x2=(x1)2+32,解得x=5,52=10,O的直径为10故答案为:10【点评】此题主要考察了垂径定理以及勾股定理的应用,要娴熟驾驭,解答此题的关键是求出OD的长度是多少17【考点】分式方程的解;解一元二次方程-因式分解法【分析】一元二次方程的根就是一元二次方程的解,就是可以使方程左右两边相等的未知数的值,即用这个数代替未知数所得式子仍旧成立;先解方程x2x6=0,将它的根分别代入方程,去掉不符合题意的根,求出m的值【解答】解:解方程x2x6=0得:x=2或3;把x=2或
19、3分别代入方程当x=2时,得到解得m=8故答案为:8【点评】本题考察的是一元二次方程的根即方程的解的定义;本题留意分式方程中分母不为018【考点】圆与圆的位置关系;非负数的性质:偶次方;非负数的性质:算术平方根【分析】干脆利用偶次方的性质以及二次根式的性质得出m,n的值,再利用圆与圆的位置关系推断方法得出答案【解答】解:O1与O2的半径分别为m、n,且m、n满意+(n2)2=0,m1=0,n2=0,解得:m=1,n=2,m+n=3,圆心距O1O2=,两圆的位置关系为:相交故答案为:相交【点评】此题主要考察了偶次方的性质以及二次根式的性质以及圆与圆的位置关系,正确把握两圆位置关系推断方法是解题关
20、键19【考点】一次函数的应用【分析】根据函数图象,分别求出线段OB与射线EB的函数解析式,然后可求出一次购置8个笔记本的价钱与分8次购置每次购置1个的花费,进而可得答案【解答】解:由线段OB的图象可知,当0x时,y=5x,1千克苹果的价钱为:y=5,设射线EB的解析式为y=kx+b(x2),把(4,20),(10,44)代入得解得:射线EB的解析式为y=4x+4,当x=8时,y=48+4=36,5836=4(元),故答案为:4【点评】本题考察了一次函数的应用,解决本题的关键是驾驭待定系数法求一次函数解析式20【考点】规律型:数字的改变类【分析】令s=1+3+32+33+32015,然后再等式的
21、两边同时乘以2,接下来,根据材料中的方程进展计算即可【解答】解:令s=1+3+32+33+32015,等式两边同时乘以3得:3s=3+32+33+32016两式相减得:2s=320161所以S=【点评】本题主要考察的是数字的改变规律,根据材料找出解决问题的方法与步骤是解题的关键三、本题共12分21【考点】分式的化简求值;零指数幂;负整数指数幂;特别角的三角函数值【专题】计算题【分析】(1)根据特别角的三角函数值、负整数整数幂与零指数幂的意义计算(2)先把括号内通分,再把除法运算化为乘法运算,然后约分后合并得到原式=2x,再根据分式有意义的条件把x=10代入计算即可【解答】解:(1)原式=22+
22、1+2=21;(2)原式=2x=2x=x+22x=2x,当x=10时,原式=210=8【点评】本题考察了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值在化简的过程中要留意运算依次与分式的化简化简的最终结果分子、分母要进展约分,留意运算的结果要化成最简分式或整式四本题共12分22【考点】切线的断定【分析】(1)连接OC,根据等腰三角形的性质:等边对等角,以及直径所对的圆周角是直角,利用等量代换证得ACO=90,据此即可证得;(2)易证A=B=1=2=30,即可求得AC的长,作CEAB于点E,求得CE的长,利用三角形面积公式求解【解答】解:(1)连接OCAC=BC,AD=
23、CD,OB=OC,A=B=1=2ACO=DCO+2,ACO=DCO+1=BCD,又BD是直径,BCD=90,ACO=90,又C在O上,AC是O的切线;(2)由题意可得DCO是等腰三角形,CDO=A+2,DOC=B+1,CDO=DOC,即DCO是等边三角形A=B=1=2=30,CD=AD=2,在直角BCD中,BC=又AC=BC,AC=2作CEAB于点E在直角BEC中,B=30,CE=BC=,SABC=ABCE=6=3【点评】本题考察了切线的断定要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可五本题共14分23【考点】列表法与树状图法;频数(率)分布表;频数(率)分
24、布直方图【分析】(1)根据频数、频率与样本容量的关系可分别求得a、b、c;(2)由(1)中求得的b、c的值可补全图形;(3)由题可知超过90分的学生人数有4人,再利用树状图可求得概率【解答】解:(1)a=0.24,=0.36, =0.08,b=500.36=18,c=500.08=4,故答案为:0.24;18;4;(2)由(1)可知7080的人数为18人,90100的人数为4人,则可补全图形如图1;(3)由(1)可知超过90分的学生人数有4人,用A、B、C、D分别表示小亮、小华及另外两名同学,树状图如图2,全部可能出现的结果是:(A,B),(A,C),(A,D),(B,A),(B,C),(B,
25、D),(C,A),(C,B),(C,D),(D,A),(D,B),(D,C),由树状图可知,从超过90分的四人中选出2人共有12种可能,而小亮与小华同时被选上的有两种可能,P(恰好同时选上小亮、小华)=【点评】本题主要考察列表法或树状图法求概率以及条形统计图的学问,用到的学问点为:概率=所求状况数与总状况数之比六本题共14分24【考点】一次函数的应用;二元一次方程组的应用;一元一次不等式的应用【分析】(1)设购置甲种鱼苗x条,乙种鱼苗y条,根据“购置甲、乙两种鱼苗600条,甲种鱼苗每条16元,乙种鱼苗每条20元”即可列出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设购置乙种鱼苗m条
26、,则购置甲种鱼苗(600m)条,根据“甲、乙两种鱼苗的成活率为80%,90%,要使这批鱼苗的总成活率不低于85%”即可列出关于m的一元一次不等式,解不等式即可得出m的取值范围;(3)设购置鱼苗的总费用为w元,根据“总费用=甲种鱼苗的单价购置数量+乙种鱼苗的单价购置数量”即可得出w关于m的函数关系式,根据一次函数的性质结合m的取值范围,即可解决最值问题【解答】解:(1)设购置甲种鱼苗x条,乙种鱼苗y条,根据题意得:.解得:,答:购置甲种鱼苗350条,乙种鱼苗250条(2)设购置乙种鱼苗m条,则购置甲种鱼苗(600m)条,根据题意得:90%m+80%(600m)85%600,解得:m300,答:购
27、置乙种鱼苗至少300条(3)设购置鱼苗的总费用为w元,则w=20m+16(600m)=4m+9600,40,w随m的增大而增大,又m300,当m=300时,w取最小值,w最小值=4300+9600=10800(元)答:当购置甲种鱼苗300条,乙种鱼苗300条时,总费用最低,最低费用为10800元【点评】本题考察了一次函数的应用、二元一次方程组的应用、一元一次不等式的性质以及一次函数的性质,解题的关键是:(1)根据数量关系得出关于x、y的二元一次方程组;(2)根据数量关系得出关于m的一元一次不等式;(3)根据数量关系得出w关于m的函数关系式本题属于中档题,难度不大,解决该题型题目时,根据数量关系
28、得出不等式(方程组或函数关系式)是关键七阅读材料题25【考点】有理数的混合运算【分析】(1)根据题目,首先弄懂题意,然后根据例子写出答案即可;(2)可以先求出104与78的最大公约数为 26,再利用辗转相除法,我们可以求出26 与 143的最大公约数为13,进而得到答案【解答】解:(1)10845=63,6345=18,2718=9,189=9,所以108与45的最大公约数是9;(2)先求104与78的最大公约数,10478=26,7826=52,5226=26,所以104与78的最大公约数是26;再求26与143的最大公约数,14326=117,11726=91,9126=65,6526=3
29、9,3926=13,2613=13,所以,26与143的最大公约数是13,78、104、143的最大公约数是13【点评】本题考察的学问点是辗转相除法与更相减损术,求三个或三个以上数的最大公约数,可以先求前两个数的最大公约数,再求所得最大公约数与第三个数的最大公约数最终得到答案八本题共16分26【考点】二次函数综合题【分析】(1)用待定系数法求出抛物线解析式;(2)先推断出面积最大时,平移直线BC的直线与抛物线只有一个交点,从而求出点M坐标;(3)先推断出四边形PBQC时菱形时,点P是线段BC的垂直平分线,利用该特别性建立方程求解;先求出四边形PBCQ的面积与t的函数关系式,从而确定出它的最大值
30、【解答】解:(1)将B(4,0)代入y=x2+3x+m,解得,m=4,二次函数解析式为y=x2+3x+4,令x=0,得y=4,C(0,4),(2)存在,理由:B(4,0),C(0,4),直线BC解析式为y=x+4,当直线BC向上平移b单位后与抛物线只有一个公共点时,MBC面积最大,x24x+b=0,=144b=0,b=4,M(2,6),(3)如图,点P在抛物线上,设P(m,m2+3m+4),当四边形PBQC是菱形时,点P在线段BC的垂直平分线上,B(4,0),C(0,4)线段BC的垂直平分线的解析式为y=x,m=m2+3m+4,m=1P(1+,1+)或P(1,1),如图,设点P(t,t2+3t+4),过点P作y轴的平行线l,过点C作l的垂线,点D在直线BC上,D(t,t+4),PD=t2+3t+4(t+4)=t2+4t,BE+CF=4,S四边形PBQC=2SPDC=2(SPCD+SBD)=2(PDCF+PDBE)=4PD=4t2+16t,0t4,当t=2时,S四边形PBQC最大=16【点评】此题是二次函数综合题,主要考察了待定系数法,极值确实定,对称性,面积确实定,解本题的关键是确定出MBC面积最大时,点P的坐标