第三章 微分中值定理与导数的应用习题解答.doc

上传人:豆**** 文档编号:34779303 上传时间:2022-08-18 格式:DOC 页数:22 大小:1.49MB
返回 下载 相关 举报
第三章 微分中值定理与导数的应用习题解答.doc_第1页
第1页 / 共22页
第三章 微分中值定理与导数的应用习题解答.doc_第2页
第2页 / 共22页
点击查看更多>>
资源描述

《第三章 微分中值定理与导数的应用习题解答.doc》由会员分享,可在线阅读,更多相关《第三章 微分中值定理与导数的应用习题解答.doc(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、如有侵权,请联系网站删除,仅供学习与交流第三章 微分中值定理与导数的应用习题解答【精品文档】第 22 页第三章 微分中值定理与导数的应用答案3.1 微分中值定理1 填空题()函数在上使拉格朗日中值定理结论成立的是()设,则有 3 个实根,分别位于区间中2 选择题()罗尔定理中的三个条件:在上连续,在内可导,且,是在内至少存在一点,使成立的( B ) A 必要条件 B充分条件 C 充要条件 D 既非充分也非必要条件()下列函数在上满足罗尔定理条件的是( C )A. B. C. D. ()若在内可导,且是内任意两点,则至少存在一点,使下式成立( B )A B 在之间C D 3证明恒等式:证明: 令

2、,则,所以为一常数设,又因为,故 4若函数在内具有二阶导数,且,其中 ,证明:在内至少有一点,使得证明:由于在上连续,在可导,且,根据罗尔定理知,存在, 使 同理存在,使 又在上符合罗尔定理的条件,故有,使得5 证明方程有且仅有一个实根证明:设,则,根据零点存在定理至少存在一个, 使得另一方面,假设有,且,使,根据罗尔定理,存在使,即,这与矛盾故方程只有一个实根6 设函数的导函数在上连续,且,其中是介于之间的一个实数 证明: 存在, 使成立.证明: 由于在内可导,从而在闭区间内连续,在开区间内可导又因为,根据零点存在定理,必存在点,使得 同理,存在点,使得因此在上满足罗尔定理的条件,故存在,

3、使成立7. 设函数在上连续, 在内可导. 试证:至少存在一点, 使 证明: 只需令,利用柯西中值定理即可证明.8证明下列不等式()当时,证明: 设,函数在区间上满足拉格朗日中值定理的条件,且, 故, 即因此, 当时,()当 时,证明:设,则函数在区间上满足拉格朗日中值定理得条件,有因为,所以,又因为,所以,从而3.1 洛毕达法则1 填空题() () 0 ()= ()1选择题()下列各式运用洛必达法则正确的是( B )A B C 不存在D =() 在以下各式中,极限存在,但不能用洛必达法则计算的是( C )A B C D 3 求下列极限() 解: =()解: = () 解:() 解:() 解:,

4、() 解:() 解:() 解: =() 解: 因为,所以=13.3 泰勒公式按的幂展开多项式解: , 同理得,且由泰勒公式得:=2 求函数的带有佩亚诺型余项的阶麦克劳林公式解:因为,所以 =3 求一个二次多项式,使得解:设,则,故 ,则 为所求4利用泰勒公式求极限解:因为 ,所以 =,故 5 设有三阶导数,且,证明在内存在一点,使证明: 因为 ,所以由麦克劳林公式得: (介于0与之间),因此 ,由于,故3.4函数的单调性与曲线的凹凸性1 填空题() 函数的单调增加区间是,单调减少区间()若函数二阶导数存在,且,则在上是单调 增加 ()函数在内单调增加,则()若点(1,3)为曲线的拐点,则,曲线

5、的凹区间为,凸区间为2 单项选择题()下列函数中,( A )在指定区间内是单调减少的函数.A. B. C. D. ()设,则在区间内( B )A. 单调增加,曲线为凹的 B. 单调减少,曲线为凹的 C.单调减少,曲线为凸的 单调增加,曲线为凸的()在内可导, 且,当 时, ,则( D )A. 任意 B. 任意C. 单调增 D. 单调增()设函数在上二阶导数大于0, 则下列关系式成立的是( B )A. B. C. D. 2 求下列函数的单调区间()解:,当时,,所以函数在区间为单调增加; 当时,所以函数在区间为单调减少()解:,当,或时,,所以函数在区间为单调增加;当时,所以函数在区间为单调减少

6、()解: ,故函数在单调增加3 证明下列不等式()证明: 对任意实数和, 成立不等式证明:令,则, 在内单调增加.于是, 由 , 就有 , 即()当时, 证明:设, ,由于当时,, 因此在单调递增, 当 时, , 故在单调递增, 当 时, 有.故当时, 因此()当 时,证明:设, ,当,所以在单调递增, 当 时, , 故在单调递增, 从而当 时, 有. 因此当 时,4 讨论方程(其中为常数)在内有几个实根解:设 则在连续, 且,由,得为内的唯一驻点在上单调减少,在上单调增加 故为极小值,因此在的最大值是,最小值是() 当或时,方程在内无实根; () 当时,有两个实根;() 当时,有唯一实根5

7、试确定曲线中的a、b、c、d,使得处曲线有水平切线,为拐点,且点在曲线上解: ,,所以解得: 6求下列函数图形的拐点及凹或凸的区间() 解: , ,令,得,当时不存在当或时, ,当或时, 故曲线在上是凸的, 在区间和上是凹的,曲线的拐点为 ()拐点及凹或凸的区间解: ,当时,不存在;当时, 故曲线在上是凸的, 在上是凹的,是曲线的拐点, 7利用凹凸性证明: 当时, 证明:令, 则, 当时, , 故函数的图形在上是凸的, 从而曲线在线段(其中)的上方,又, 因此,即3.5 函数的极值与最大值最小值1 填空题()函数取极小值的点是() 函数在区间上的最大值为,最小值为 2选择题() 设在内有二阶导

8、数,问还要满足以下哪个条件,则必是的最大值?(C )A 是的唯一驻点 B 是的极大值点C 在内恒为负 D不为零() 已知对任意满足,若,则(B)A. 为的极大值 B. 为的极小值C. 为拐点 D. 不是极值点, 不是拐点()若在至少二阶可导, 且,则函数在处( )A 取得极大值 B 取得极小值 C 无极值 D 不一定有极值3 求下列函数的极值()解:由,得,所以函数在点取得极小值()解:定义域为,令得驻点,当时,当时,因此为极大值4 求的在上的最大值与最小值解:由,得, 而, 所以最大值为132,最小值为75 在半径为的球内作一个内接圆锥体,问此圆锥体的高、底半径为何值时,其体积最大解:设圆锥

9、体的高为, 底半径为,故圆锥体的体积为,由于,因此 ,由,得,此时由于内接锥体体积的最大值一定存在,且在的内部取得. 现在在内只有一个根,故当, 时, 内接锥体体积的最大6. 工厂与铁路线的垂直距离为, 点到火车站的距离为. 欲修一条从工厂到铁路的公路, 已知铁路与公路每公里运费之比为,为了使火车站与工厂间的运费最省, 问点应选在何处?解: 设, 与间的运费为, 则 其中是某一正数 由 , 得. 由于, , , 其中以为最小, 因此当AD=km时, 总运费为最省7 宽为的运河垂直地流向宽为的运河. 设河岸是直的,问木料从一条运河流到另一条运河去,其长度最长为多少?解: 问题转化为求过点的线段的

10、最大值. 设木料的长度为, ,木料与河岸的夹角为,则,且 则由得, 此时,故木料最长为3.6 函数图形的描绘求的渐近线.解:由 ,所以为曲线的铅直渐近线因为 所以为曲线的斜渐近线2作函数的图形。解: 函数的定义域为令,得;令,得列表讨论如下:极大值拐点由于所以,是曲线的斜渐近线又因为,所以是曲线的铅垂渐近线当时;当时综合上述讨论,作出函数的图形如下2323.7 曲率1 填空题:() 曲线上任一点的曲率为,上任一点的曲率为_0_() 曲线在其顶点处曲率为_2_,曲率半径为() 曲线的弧微分2 求常数,使在处与曲线相切,且有相同的凹向与曲率解: 由题设可知 函数与在处由相同的函数值,一阶导数值,二

11、阶导数值,故3 曲线弧上哪一点处的曲率半径最小?求出该点的曲率半径解: , 曲线在一点处的曲率为令 , ,当时,故在上单调增加, 因此在上的最大值是, 即在点处的曲率半径最小, 其曲率半径为4求椭圆 在点处的曲率及曲率半径解:因此曲率,曲率半径3.7方程的近似解1. 试证明方程在区间内有唯一的实根,并用切线法求这个根的近似值,使误差不超过0.01.证明: 令,函数在单调递增在上连续,且,故方程在区间内有唯一的实根求近似值的过程略第三章 综合练习题1填空题() 0 () 函数在区间内单调减少,在区间内单调增加() 曲线的渐近线是() 1 2 求下列极限() 解:() 解:=3 求证当时, 证明:

12、 令, 则 当时, ,故在单调增 当时,有,即 4 设在上可导且,证明:存在点使.证明: 设, 则,且由拉格朗日中值定理知, 存在,使, 即5 设函数在上连续,在内具有二阶导数且存在相等的最大值, 且, , 证明: 存在,使得证明: 设分别在取得最大值, 则, 且 令当时, , 由罗尔定理知, 存在, 使, 进一步由罗尔定理知, 存在,使,即当时, ,,由零点存在定理可知,存在,使 由于,由前面证明知, 存在,使,即6 设,证明方程有且仅有一个正的实根证明:设当,显然只有一个正的实根下考虑时的情况先证存在性:因为在内连续,且,由零点存在定理知,至少存在一个,使,即至少有一个正的实根再证唯一性:假设有,且,使,根据罗尔定理,存在,使,即,从而,这与矛盾故方程只有一个正的实根7 对某工厂的上午班工人的工作效率的研究表明,一个中等水平的工人早上8时开始工作,在小时之后,生产出个产品问:在早上几点钟这个工人工作效率最高?解:因为, 令,得 又当时,函数在上单调增加;当时,函数在上单调减少故当时,达到最大, 即上午11时这个工人的工作效率最高

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁