《二次函数应用(1).ppt》由会员分享,可在线阅读,更多相关《二次函数应用(1).ppt(13页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 2 . 二次函数二次函数y=ax2+bx+c的图象是一条的图象是一条 ,它的对,它的对称称轴是轴是 ,顶点坐标是,顶点坐标是 . 当当a0时,抛时,抛物线开口向物线开口向 ,有最,有最 点,函数有最点,函数有最 值,是值,是 ;当;当 a0时,抛物线开口向时,抛物线开口向 ,有最,有最 点,函数有最点,函数有最 值,值,是是 。抛物线抛物线abacab44,22abx2直线abac442上上小小下下大大abac442高高低低 1. 二次函数二次函数y=a(x-h)2+k的图象是一条的图象是一条 ,它的,它的对称轴是对称轴是 ,顶点坐标是,顶点坐标是 .抛物线抛物线直线直线x=h(h,k)基础
2、扫描基础扫描 九年级上册九年级上册22.3实际问题与二次函数实际问题与二次函数(第(第1课时)课时) 学习目标:学习目标:能够表示实际问题中变量之间的二次函数关系,会运能够表示实际问题中变量之间的二次函数关系,会运用二次函数的顶点坐标求出实际问题的最大值(或最用二次函数的顶点坐标求出实际问题的最大值(或最小值)小值) 学习重点:学习重点:探究利用二次函数的最大值(或最小值)解决实际问探究利用二次函数的最大值(或最小值)解决实际问题的方法题的方法课件说课件说明明从地面竖直向上抛出一小球,小球的高度从地面竖直向上抛出一小球,小球的高度 h(单位:单位:m)与小球的运动时间与小球的运动时间 t(单位
3、:单位:s)之间的关系式是之间的关系式是h= 30t - 5t 2 (0t6)小球的运动时间是多少时,小小球的运动时间是多少时,小球最高?小球运动中的最大高度是多少?球最高?小球运动中的最大高度是多少?1创设情境,引出问题创设情境,引出问题小球运动的时间是小球运动的时间是 3 s 时,小球最高时,小球最高小球运动中的最大高度是小球运动中的最大高度是 45 m303225bta (),2243045445acbha ()2结合问题,拓展一般结合问题,拓展一般由于抛物线由于抛物线 y = ax 2 + bx + c 的顶点是最低(高)点,的顶点是最低(高)点,当当时,二次函数时,二次函数 y =
4、ax 2 + bx + c 有最小(大)有最小(大) 值值abx2abacy442如何求出二次函数如何求出二次函数 y = ax 2 + bx + c 的最小(大)值?的最小(大)值?3类比引入类比引入,探究问题,探究问题1整理后得整理后得 用总长为用总长为 60 m 的篱笆围成矩形场地,矩形面积的篱笆围成矩形场地,矩形面积 S 随矩形一边长随矩形一边长 l 的变化而变化当的变化而变化当 l 是多少米时,场地是多少米时,场地的面积的面积 S 最大?最大?解:解: , llS302当当 时,时,S 有最大值为有最大值为 225442abac当当 l 是是 15 m 时,场地的面积时,场地的面积
5、S 最大最大(0l30)1512302abl()llS260( )例例1:如图,在一面靠墙的空地上用长为如图,在一面靠墙的空地上用长为24米的篱笆,围成中间隔有米的篱笆,围成中间隔有二道篱笆的长方形花圃,设花圃的宽二道篱笆的长方形花圃,设花圃的宽AB为为x米,面积为米,面积为S平方米。平方米。(1)求求S与与x的函数关系式及自变量的取值范围;的函数关系式及自变量的取值范围;(2)当当x取何值时所围成的花圃面积最大,最大值是多少?取何值时所围成的花圃面积最大,最大值是多少?(3)若墙的最大可用长度为若墙的最大可用长度为8米,则求围成花圃的最大面积。米,则求围成花圃的最大面积。 ABCD解: (1
6、) AB为x米、篱笆长为24米 花圃宽为(244x)米 (3) 墙的可用长度为8米 (2)当当x 时,S最大值 36(平方米)32ababac442 Sx(244x) 4x224 x (0 x6) 0244x 6 4x6当x4cm时,S最大值32 平方米4归纳探究,总结方法归纳探究,总结方法2列出二次函数的解析式,并根据自变量的实际列出二次函数的解析式,并根据自变量的实际意义,确定自变量的取值范围意义,确定自变量的取值范围.3在自变量的取值范围内,求出二次函数的最大在自变量的取值范围内,求出二次函数的最大值或最小值值或最小值.1由于抛物线由于抛物线 y = ax 2 + bx + c 的顶点是
7、最低(高)的顶点是最低(高)点,当点,当时,二次函数时,二次函数 y = ax 2 + bx + c 有最小(大)有最小(大) 值值abx2abacy4425运用新知,拓展训练运用新知,拓展训练1.为了改善小区环境,某小区决定要在一块一边靠为了改善小区环境,某小区决定要在一块一边靠墙墙(墙长(墙长 25 m)的空地上修建一个矩形绿化带)的空地上修建一个矩形绿化带 ABCD,绿,绿化带一边靠墙,化带一边靠墙, 另三边用总长为另三边用总长为 40 m 的栅栏围住的栅栏围住 (如(如下图)设绿化带的下图)设绿化带的 BC 边长为边长为 x m,绿化带的面积为,绿化带的面积为 y m 2(1)求)求
8、y 与与 x 之间的函数关系之间的函数关系式,并写出自变量式,并写出自变量 x 的取值范围的取值范围.(2)当)当 x 为何值时,满足条件为何值时,满足条件的绿化带的面积最大?的绿化带的面积最大?DCBA25 m2、已知:用长为、已知:用长为12cm的铁丝围成一个矩形,一边长为的铁丝围成一个矩形,一边长为xcm.,面积为面积为ycm2,问何时矩形的面积最大?问何时矩形的面积最大?解:解: 周长为周长为12cm, 一边长为一边长为xcm , 另一边为(另一边为(6x)cm 解解:由题意得:由题意得:x1x22k ,x1x22k1 =(x1x2)2 2 x1x24k22(2k1) 4k24k2 4
9、(k )21212221xx 21 当k 时, 有最小值,最小值为 2221xx yx(6x)x26x (0 x6) (x3) 29 a10, y有最大值有最大值 当当x3cm时,时,y最大值最大值9 cm2,此时矩形的另一边也为,此时矩形的另一边也为3cm答:矩形的两边都是答:矩形的两边都是3cm,即为正方形时,矩形的面积最大。,即为正方形时,矩形的面积最大。3、已知、已知x1、x2是一元二次方程是一元二次方程x22kx2k10的两根,求的两根,求 的最小值。的最小值。 2221xx next(1) 如何求二次函数的最小(大)值,并利用其如何求二次函数的最小(大)值,并利用其解决实际问题?解决实际问题?(2) 在解决问题的过程中应注意哪些问题?你学在解决问题的过程中应注意哪些问题?你学到了哪些思考问题的方法?到了哪些思考问题的方法?6课堂小结课堂小结教科书习题教科书习题 22.3第第 1,4,5 题题7布置作业布置作业谈一谈