2019-2020学年八年级数学上册-4.3-一次函数的图象教案-北师大版.doc

上传人:可**** 文档编号:34546958 上传时间:2022-08-16 格式:DOC 页数:4 大小:35KB
返回 下载 相关 举报
2019-2020学年八年级数学上册-4.3-一次函数的图象教案-北师大版.doc_第1页
第1页 / 共4页
2019-2020学年八年级数学上册-4.3-一次函数的图象教案-北师大版.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《2019-2020学年八年级数学上册-4.3-一次函数的图象教案-北师大版.doc》由会员分享,可在线阅读,更多相关《2019-2020学年八年级数学上册-4.3-一次函数的图象教案-北师大版.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、2019-2020学年八年级数学上册 4.3 一次函数的图象教案 北师大版4.3.一次函数的图象(一)一、教学目标1、理解函数图象的概念。2、经历作图过程,初步了解作函数图象的一般步骤。3、理解一次函数的代数表达式与图象之间的对应关系。4、能较熟练作出一次函数的图象。二、能力目标1、已知解析式作函数的图象,培养学生数形结合的意识和能力。2、在探究活动中发展学生的合作意识和能力。三、情感目标1、经历作图过程,归纳总结作函数图象的一般步骤,发展学生的总结概括能力。2、加强新旧知识的联系,促进学生新的认知结构的建构。四、教学重点1、能熟练地作出一次函数的图象。2、归纳作函数图象的一般步骤。3、理解一

2、次函数的代数表达式与图象之间的对应关系。五、教学过程1、新课导入上节课我们学习了一次函数及正比例函数的概念,正比例函数与一次函数的关系,并能根据已知信息列出x与y的函数关系式,本节课我们研究一下一次函数的图象及性质。2、讲授新课(1)函数图象的概念把一个函数的自变量x与对应的因变量y的值作为点的横坐标和纵坐标,在直角坐标系内描出它的对应点,所有这些点组成的图形叫做该函数的图象。假设在代数表达式y=2x中,自变量x取1时,对应的因变量y=2,则我们可在直角坐标系内描出表示(1,2)的点,再给x的另一个值,对应又一个y,又可知道直角坐标系内描出另一个点,所有这些点组成的图形叫该函数y=2x的图象,

3、由此看来,函数图象是满足函数表达式的所有点的集合。(2)作一次函数的图象例1:作出一次函数y=2x+1的图象解:列表:x-2-1012y=2x+1-3-1135描点:以表中各组对应值作为点的坐标,在直角坐标系内描出相应的点。连线:把这些点依次连接起来,得到y=2x+1的图象(如图6-4),它是一条直线。小结:从刚才作图的情况来总结一下作一次函数图象有哪些步骤:(1)列表;(2)描点;(3)连线。做一做(1)作出一次函数y=-2x+5的图象,(2)在所作的图象上取几个点,找出它们的横坐标和纵坐标,并验证它们是否满足关系式y=-2x+5。列表:x-2-1012y=-2x+597531描点:以表中各

4、组对应值作为点的坐标,在直角坐标第内描出相应的点。连线:把这些点依次连接起来,得到y=-2x+5的图象,它是一条直线。图象如下:在图象上找点A(3,-1)B(4,-3),当x=3时,y=-23+5=-1;当x=4时,y=-24+5=-3。(3,-1),(4,-3)满足关系式y=-2x+5。3、议一议(1)满足关系式y=-2x+5的x、y所对应的点(x,y)都在一次函数y=-2x+5的图象上吗?(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5吗?(3)一次函数y=kx+b的图象有什么特点?请大家分组讨论,然后回答。(1)满足关系式y=-2x+5的x,y所对应的点(x,

5、y)都在一次函数y=-2x+5的图象上。(2)一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5。由此看来,满足函数关系式y=-2x+5的x,y所对应的点(x,y)都在一次函数y=-2x+5的图象上;反过来,一次函数y=-2x+5的图象上的点(x,y)都满足关系式y=-2x+5。所以,一次函数的代数表达式与图象是一一对应的,即满足一次函数的代数表达式的点在图象上,图象上的每一点的横坐标x,纵坐标y都满足一次函数的代数表达式。小结:一次函数的图象是一条直线,由直线的公理可知:两点确定一条直线,所以作一次函数的图象时,只要确定两个点,再过这两个点作直线就可以了,一次函数y=kx

6、+b的图象也称为直线y-kx+b。4、课堂练习分别作出一次函数y=x与y=-3x+9的图象。六、课后小结1、函数图象的概念。2、作一次函数的步骤。3、明确一次函数的图象是一条直线,因此在作图时,不需要列表,只要确定两点就可以了。七、课后作业P 163习题6.3教后感:经历作图过程,初步了解作函数图象的一般步骤。归纳总结作函数图象的一般步骤,发展学生的总结概括能力,培养学生数形结合的意识和能力。在探究活动中发展学生的合作意识和能力。4.3.一次函数的图象(二)一、教学目标1、了解正比例函数y=kx的图象的特点。2、会作正比例函数的图象。3、理解一次函数及其图象的有关性质。4、能熟练地作出一次函数

7、的图象。二、能力目标1、进一步培养学生数形结合的意识和能力。2、通过议一议,培养学生的探索精神和合作交流意识。三、情感目标让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。四、教学重点1、正比例函数的图象的特点。2、一次函数的图象的性质。五、教学过程1、新课导入上节课我们学习了如何画一次函数的图象,步骤为列表;描点;连线。经过讨论我们又知道了画一次函数的图象不需要许多点,只要找两点即可,还明确了一次函数的代数表达式与图象之间的对应关系。本节课我们进一步来研究一次函数的图象的其他性质。2、讲授新课(1)首先我们来研究一次函数的特例正比例函数有关性质。

8、请大家在同一坐标系内作出正比例函数y=x,y=x,y=3x,y=-2x的图象。3、议一议(1)正比例函数y=kx的图象有什么特点?(都经过原点)(2)你作正比例函数y=kx的图象时描了几个点?(至少两点)(3)直线y=x,y=x,y=3x中,哪一个与x轴正方向所成的锐角最大?哪一与x轴正方向所成的锐角最小?4、小结:正比例函数的图象有以下特点:(1)正比例函数的图象都经过坐标原点。(2)作正比例函数y=kx的图象时,除原点外,还需找一点,一般找(1,k)点。(3)在正比例函数y=kx图象中,当k0时,k的值越大,函数图象与x轴正方向所成的锐角越大。(4)在正比例函数y=kx的图象中,当k0时,

9、y的值随x值的增大而增大;当k0,y的值随x值的增大而增大;在函数y=-x+6中,y的值随x值的增大而减小。由上可知,一次函数y=kx+b中,y的值随x的变化而变化的情况跟正比例函数的图象的性质相同。对照正比例函数图象的性质,可知一次函数的图象不过原点,但是和两个坐标轴相交。在作一次函数的图象时,也需要描两个点。一般选取(0,b),(-,0)比较简单。6、想一想(1)x从0开始逐渐增大时,y=2x+6和y=5x哪一个值先达到20?这说明了什么?(y=5x的函数值先达到20,这说明随着x的增加,y=5x的函数值比y=2x+6的函数值增加得快)(2)直线y=-x与y=-x+6的位置关系如何?(平行

10、,一次函数k相同就平行)(3)直线y=2x+6与y=-x+6的位置关系如何?(相交)7、课堂练习1、下列一次函数中,y的值随x值的增大而增大的是( )A、y=-5x+3 B、y=-x-7 C、y=- D、y=-+42、下列一次函数中,y的值随x值的增大而减小的是( )A、y=x-8 B、y=-x+3 C、y=2x+5 D、y=7x-6六、课后小结1、正比例函数y=kx的图象的特点。2、一次函数y=kx+b的图象的特点。七、作业P 165习题6.4教后感:通过议一议,培养学生的探索精神和合作交流意识。让学生全身心地投入教学活动中,能积极与同伴合作交流,并能进行探索的活动,发展实践能力与创新精神。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 技术资料 > 技术总结

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁