《九年级数学上册全部学案(青岛版).doc》由会员分享,可在线阅读,更多相关《九年级数学上册全部学案(青岛版).doc(74页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、青岛版数学九年级上册学案1.1 平行四边形及其性质(1) 审核人:张宏学习目标:1、理解并掌握平行四边形的定义2、掌握平行四边形的性质定理1及性质定理23、提高综合运用知识的能力学习重点:平行四边形的定义,对角、对边相等的性质,以及性质的应用学习难点:运用平行四边形的性质进行有关的论证和计算预习指导:1、在四边形中,最常见、价值最大的是平行四边形,生活中也常见平行四边形的实例,如_等,都是平行四边形。2、_是平行四边形。3、平行四边形的性质是:_.学习过程:一、 学习新知1、平行四边形的定义(1)定义:_叫做平行四边形。(2)几何语言表述: ABCD ADBC 四边形ABCD是平行四边形 (3
2、)定义的双重性: 具备_的四边形,才是平行四边形,反过来,平行四边形就一定具有性质。(4)平行四边形的表示:平行四边形ABCD记作_,读作_.2、平行四边形的性质平行四边形是一种特殊的四边形,它除具有四边形的性质和两组对边分别平行外,还有什么特殊的性质呢?已知:如图ABCD,求证:ABCD,CBAD分析:要证ABCD,CBAD我们可以考虑只要证明四条线段所在的两个三角形全等,因此我们可以作辅助线_,它将平行四边形分成_和_,我们只要证明这两个三角形全等即可得到结论证明:总结:本题提供了证明线段相等的方法,也体现了数学中的转化思想。在上题中你能证明B=D, BAD=BCD吗?利用我们学过的方法试
3、一试。证明:通过上面的证明,我们得到了平行四边形的性质定理1是:_.平行四边形的性质定理2是:_.二、应用举例:例1、如图,在平行四边形ABCD中,AE=CF,求证:AF=CE例2:(1)在平行四边形ABCD中,A=500,求B、C、D的度数。(2)在平行四边形ABCD中,A=B+400,求A的邻角的度数。三、随堂练习1、如图(6),在平行四边形ABCD中,AE=CF,求证AF=CE2、平行四边形的两邻边的比是2:5,周长为28cm,求四边形的各边的长。3、在平行四边形ABCD中,若A:B=2:3,求C、D的度数。四、课堂小结 : 五、当堂检测1填空:(1)在ABCD中,A=,则B= 度,C=
4、 度,D= 度(2)如果ABCD中,AB=240,则A= 度,B= 度,C= 度,D= 度 (3)如果ABCD的周长为28cm,且AB:BC=25,那么AB= cm,BC= cm,CD= cm,CD= cm2如图,在ABCD中,AC为对角线,BEAC,DFAC,E、F为垂足,求证:BEDF3、(选择)在下列图形的性质中,平行四边形不一定具有的是( )(A)对角相等 (B)对角互补 (C)邻角互补 (D)内角和是第3题图 第4题图4、如图:在ABCD中,如果EFAD,GHCD,EF与GH相交与点O,那么图中的平行四边形一共有( )(A)4个 (B)5个 (C)8个 (D)9个5、如图,ADBC,
5、AECD,BD平分ABC,求证:AB=CE1.1 平行四边形及其性质(2) 审核人:张宏学习目标:1、掌握平行四边形对角线互相平分的性质2、能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题培养学生的推理论证能力和逻辑思维能力学习重点:掌握平行四边形对角线互相平分的性质学习难点:能综合运用平行四边形的性质解决平行四边形的有关计算问题,和简单的证明题培养学生的推理论证能力和逻辑思维能力学习过程:二、 学习新知如图,EFGH中,连接对角线EG、HF,设它们分别交于点O分别度量OH、OF的长度,你发现它们存在的数量关系是_.猜想线段OG、OE之间的数量关系是_.证明你的猜想:由此
6、我们可以得到平行四边形的性质定理3_二、应用举例:例题已知: ABCD的对角线AC、BD相交于点O,EF过点O与AB、CD分别相交于点E、F求证:OEOF分析:要证OEOF,根据图形分析,只要证明OE、OF所在的两个三角形_.证明:若例1中的条件都不变,将EF转动到图b的位置,那么例1的结论是否成立?若将EF向两方延长与平行四边形的两对边的延长线分别相交(图c和图d),例1的结论是否成立,说明你的理由三、随堂练习1、在平行四边形中,周长等于48, 已知一边长12,求各边的长 已知AB=2BC,求各边的长 已知对角线AC、BD交于点O,AOD与AOB的周长的差是10,求各边的长2、如图,ABCD
7、中,AEBD,EAD=60,AE=2cm,AC+BD=14cm,则OBC的周长是_ _cm3、ABCD一内角的平分线与边相交并把这条边分成,的两条线段,则ABCD的周长是_ _四、课后小结 :平行四边形的对角线具备的性质是_.五、当堂检测1判断对错(1)在ABCD中,AC交BD于O,则AO=OB=OC=OD ( )(2)平行四边形两条对角线的交点到一组对边的距离相等 ( )(3)平行四边形的两组对边分别平行且相等 ( )(4)平行四边形是轴对称图形 ( )2在 ABCD中,AC6、BD4,则AB的范围是_ _3在平行四边形ABCD中,已知AB、BC、CD三条边的长度分别为(x+3),(x-4)
8、和16,则这个四边形的周长是 4公园有一片绿地,它的形状是平行四边形,绿地上要修几条笔直的小路,如图,AB15cm,AD12cm,ACBC,求小路BC,CD,OC的长,并算出绿地的面积1.2 平行四边形的判定(1) 审核人:张宏学习目标:1、在探索平行四边形的判别条件中,理解并掌握用边来判定平行四边形的方法 2、会综合运用平行四边形的判定方法和性质来解决问题 3、培养用类比、逆向联想及运动的思维方法来研究问题学习重点:理解和掌握平行四边形的判定定理。预习指导:1、平行四边形定义是_.2、平行四边形性质是(1)_.(2)_.3、平行四边形的判定定理是(1)_.(2)_.学习过程:三、 学习新知小
9、明的父亲手中有一些木条,他想通过适当的测量、割剪,钉制一个平行四边形框架,你能帮他想出一些办法来吗?请学生通过观察、测量、猜想、验证、探索构成平行四边形的条件,思考并探讨:(1)你能适当选择手中的硬纸板条搭建一个平行四边形吗?(2)你怎样验证你搭建的四边形一定是平行四边形?(3)你能说出你的做法及其道理吗?(4)能否将你的探索结论作为平行四边形的一种判别方法?你能用文字语言表述出来吗?(5)证明以上发现的平行四边形的判定发方法。平行四边形的判定定理(1)两组对边分别相等的四边形是平行四边形已知:求证:证明:平行四边形的判定定理(2)一组对边平行且相等的四边形是平行四边形。已知:求证:证明:二、
10、应用举例例题:已知:如图,ABCD中,E、F分别是AD、BC的中点,求证:BE=DF三、随堂练习已知:如图,ABCD中,E、F分别是AC上两点,且BEAC于E,DFAC于F求证:四边形BEDF是平行四边形四、课后小结平行四边形的判定定理(1)是_.平行四边形的判定定理(2)是_.五、当堂检测1、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平行四边形。 2、已知:如图,ABC,BD平分ABC,DEBC,EFAC, 求证:BE=CF1.2平行四边形的判定(2) 审核人:张宏学习目标:1、在探索平行四边形的判别条件中,理解并
11、掌握用对角线来判定平行四边形的方法 2会综合运用平行四边形的判定方法和性质来解决问题 3培养用类比、逆向联想及运动的思维方法来研究问题学习重点:理解和掌握平行四边形的判定定理。学习难点:几何推理方法的应用。学习过程:四、 学习新知已知:如图,平行四边形HGFE中,HF与GE交与点O,HO=OF,GO=OE,求证:四边形HGFE是平行四边形。由此,我们可以得到平行四边形的判定方法:平行四边形的判定定理(3)_.五、 应用举例例题:已知:如图ABCD的对角线AC、BD交于点O,E、F是AC上的两点,并且AE=CF求证:四边形BFDE是平行四边形分析:欲证四边形BFDE是平行四边形可以根据判定方法2
12、来证明证明:三、随堂练习1如图,在四边形ABCD中,AC、BD相交于点O,(1)若AD=8cm,AB=4cm,那么当BC=_ _cm,CD=_ _cm时,四边形ABCD为平行四边形;(2)若AC=10cm,BD=8cm,那么当AO=_ _cm,DO=_ _cm时,四边形ABCD为平行四边形2已知:如图,ABCD中,点E、F分别在CD、AB上,DFBE,EF交BD于点O求证:EO=OF3证明:两组对角分别相等的四边形是平行四边形。四、课后小结 :我们学习了平行四边形的定义,性质、判定。平行四边形的性质和判定尤为重要,同学们要掌握好。 学生掌握平行四边形的五个判定方法,这些判定的方法是:从边看:
13、的四边形是平行四边形; 的四边形是平行四边形; 的四边形是平行四边形从对角线看: 的四边形是平行四边形从角看: 的四边形是平行四边形五、当堂检测1、在四边形ABCD中,AC交BD于点O,若AO=1/2AC,BO=1/2BD,则四边形ABCD是平行四边形。( )2、在四边形ABCD中,AC交BD于点O,若OC= 且 ,则四边形ABCD是平行四边形。3、下列条件中能判断四边形是平行四边形的是( )A、对角线互相垂直 B、对角线相等 C对角线互相垂直且相等 D对角线互相平分 4、已知如图,O为平行四边形ABCD的对角线AC的中点,EF经过点O,且与AB交于E,与CD 交于F。求证:四边形AECF是平
14、行四边形。 5、已知:如图,平行四边形ABCD的对角线AC、BD相交于点O,M、N分别是OA、OC的中点,求证:BMDN,且BM=DN 。1.2 特殊的平行四边形(1)审核人:张宏 学习目标:1、理解矩形的意义,知道矩形与平行四边形的区别与联系。2、掌握矩形的性质定理,会用定理进行有关的计算与证明。3、掌握直角三角形斜边上中线的性质与应用。学习重点:掌握矩形的性质定理,会用定理进行有关的计算与证明。学习难点:掌握直角三角形斜边上中线的性质与应用学习过程:一、 学习新知自学教材内容完成以下题目:1、 叫做矩形。矩形是_的平行四边形。2、从矩形的意义可以探究矩形具有的性质:(1)矩形具有平行四边形
15、具有的一切性质。(2)矩形与平行四边形比较又有其特殊的性质:特殊在“角”上的性质是_.特殊在“对角线”上的性质是:_.3、从矩形的性质可以说明直角三角形斜边上的中线等于斜边的_.二、应用举例:例题:在直角三角形ABC中,C=90,CD是AB边上的中线,A=30,AC=5 ,求ADC的周长。三、随堂练习1、由矩形的一个顶点向其所对的对角线引垂线,该垂线分直角为1:3两部分,则该垂线与另一条对角线的夹角为( )A、22.5 B、45 C、30 D、602、已知:如图2,矩形ABCD中,E是BC上一点,于F,若 。求证:CEEF。EDCBAF3、如图,将矩形ABCD沿对角线BD折叠,使点C落在F的位
16、置,BF交AD于E,AD=8,AB=4,求BED的面积。四、课堂小结五、当堂检测1、矩形的两条对角线的夹角为60,较短的边长为4.5厘米,则对角线长为 。2、如图5,在矩形ABCD中,求这个矩形的周长。3、折叠矩形ABCD纸片,先折出折痕BD,再折叠使A落在对角线BD上A位置上,折痕为DG。AB=2,BC=1。求AG的长。1.3 特殊的平行四边形(2)审核人:张宏学习目标:1、理解菱形的定义。2、探究归纳菱形的性质。3、掌握菱形的判定方法。4、培养综合运用知识分析解决问题的能力。学习重点:理解菱形的定义。探究归纳菱形的性质。掌握菱形的判定方法。学习难点:培养综合运用知识分析解决问题的能力。学习
17、过程:一、 学习新知自学教材17页19页内容完成以下题目:1、 叫做菱形。菱形是_的平行四边形。2、从菱形的意义可以探究菱形具有的性质:(1)菱形具有平行四边形具有的一切性质。(2)菱形与平行四边形比较又有其特殊的性质:特殊在“边”上的性质是_.特殊在“对角线”上的性质是:_.3、我们可以从“对角线”和“角”两方面得到菱形的判定定理:菱形的判定定理(1):_.菱形的判定定理(2):_.二、应用举例:例题:如图,已知AD是RtABC斜边BC上的高,ABC的平分线交AD于M交AC于E,DAC的平分线交CD于N.证明:四边形AMNE是菱形.分析:(1)由已知AD是RtABC斜边BC上的高很容易得到A
18、BC=_,又ABC的平分线交AD于M交AC于E,DAC的平分线交CD于N,可得_=_=_=_.(2)要证四边形AMNE是菱形可证其四条边相等,或证对角线互相垂直平分。根据分析完成证明:三、随堂练习1、菱形周长为40,一条对角线长为16,则另一条对角线长为 ,这个菱形的面积为 。2、已知菱形的一边长为,4厘米,则它的周长为 3、在四边形ABCD中,若已知ABCD,则再增加条件 即可使四边形ABCD成为平行四边形。若再补充条件_,则四边形ABCD为菱形4、矩形ABCD的对角线相交于O,DEAC,CESD,求证四边形OCED是菱形。四、课堂小结五、当堂检测1、棱形的周长为8.4cm,相邻两角之比为5
19、:1,那么菱形一组对边之间的距离为( )A、1.05cm B、0.525cm C、4.2cm D、2.1cm2、菱形ABCD中A=120,周长为14.4,则较短对角线的长度为 。3、菱形的面积为50平方厘米,一个角为30,则它的周长为 。4、在菱形ABCD中,BAD=80,AB的垂直平分线交AC于F,交AB于E,则,CDF=( )A、80 B、70 C、65 D、505、小明和小亮在做一道习题,若四边形ABCD是平行四边形,请补充条件 ,使得四边形ABCD是菱形。小明补充的条件是AB=BC;小亮补充的条件是AC=BD,你认为下列说法正确的是( )A、小明、小亮都正确 B、小明正确,小亮错误C、
20、小明错误,小亮正确 D、小明、小亮都错误6、下列命题中是真命题的是()对角线互相平分的四边形是菱形对角线互相平分且相等的四边形是菱形 对角线互相垂直的四边形是菱形D对角线互相垂直平分的四边形是菱形7、在菱形ABCD中,E、F分别是BC、CD上的点,且CE=CF,过点C做CGEA交FA于H ,交AD于G,若BAE=25,BCD=130,求AHC的度数。8、AD是ABC的角平分线,DEAC交AB于E,DFAB交AC于F,求证四边形AEDF是菱形。1.3 特殊的平行四边形(3) 审核人:张宏学习目标:1掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算2理解正方形与平行四边形、矩形、菱形的
21、联系和区别。学习重点:掌握正方形的概念、性质和判定,并会用它们进行有关的论证和计算学习难点:理解正方形与平行四边形、矩形、菱形的联系和区别。学习过程:一、 学习新知自学教材19页20页内容完成以下题目:1、 叫做正方形。正方形是_的矩形,也是_的菱形。2、从正方形的意义可以探究正方形具有的性质:(1)正方形具有平行四边形具有的一切性质。(2)正方形具有矩形具有的一切性质。(3)正方形具有菱形具有的一切性质。(4)正方形的对角线具有的性质是_.3、正方形的判定方法是:(1)_的矩形是正方形。(2)_的菱形是正方形。二、应用举例:例题1:已知:如图,正方形ABCD中,E为BC上一点,AF平分DAE
22、交CD于F,求证:AE=BE+DF例题2:已知:如图,ABC中,C=90,CD平分ACB,DEBC于E,DFAC于F求证:四边形CFDE是正方形三、随堂练习1已知:如图,点E是正方形ABCD的边CD上一点,点F是CB的延长线上一点,且DE=BF求证:EAAF2已知:如图,正方形ABCD中,对角线的交点为O,E是OB上的一点,DGAE于G,DG交OA于F求证:OE=OF四、课后小结:正方形的概念、性质和判定,正方形与平行四边形、矩形、菱形的联系和区别。五、当堂检测1、正方形的四条边_ _,四个角_ _,两条对角线_ _2、在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的是( )
23、(A)AC=BD,ABCD,AB=CD (B)ADBC,A=C (C)AO=BO=CO=DO,ACBD (D)AO=CO,BO=DO,AB=BC3、如图,过矩形ABCD的四个顶点作对角线AC、BD的平行线,分别相交于E、F、G、H四点,则四边形EFGH为( )A.平行四边形 B、矩形 C、菱形 D. 正方形4、下列说法是否正确,并说明理由对角线相等的菱形是正方形;( )对角线互相垂直的矩形是正方形;( )对角线垂直且相等的四边形是正方形;( )四条边都相等的四边形是正方形;( )四个角相等的四边形是正方形( )5、如图,在正方形ABCD中,E为DC边上的点,连接BE,将BCE绕点C顺时针方向旋
24、转90得到DCF,连接EF若BEC=60,则EFD的度数为( ) (A)10 (B)15 (C)20 (D)25ABCDEF6、已知:如图,四边形ABCD为正方形,E、F分别为CD、CB延长线上的点,且DEBF求证:AFEAEF1.4 图形的中心对称(1) 审核人:张宏 教学目标1、了解中心对称、对称中心、关于中心的对称点等概念及掌握这些概念解决一些问题2、复习运用旋转知识作图,旋转角度变化,设计出不同的美丽图案来引入旋转180的特殊旋转中心对称的概念,并运用它解决一些实际问题重难点、关键1重点:利用中心对称、对称中心、关于中心对称点的概念解决一些问题2难点与关键:从一般旋转中导入中心对称 一
25、、复习引入 请同学们独立完成下题 如图,ABC绕点O旋转,使点A旋转到点D处,画出旋转后的三角形,并写出简要作法 二、探索新知 问题:作出如图的两个图形绕点O旋转180的图案,并回答下列的问题:1以O为旋转中心,旋转180后两个图形是否重合?2各对称点绕O旋转180后,这三点是否在一条直线上? 像这样,把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心 这两个图形中的对应点叫做关于中心的对称点 1如图,四边形ABCD绕D点旋转180,请作出旋转后的图案,写出作法并回答(1)这两个图形是中心对称图形吗?如果是对称中心是哪一
26、点?如果不是,请说明理由(2)如果是中心对称,那么A、B、C、D关于中心的对称点是哪些点2如图,已知AD是ABC的中线,画出以点D为对称中心,与ABD成中心对称的三角形三、巩固练习 教材练习2四、应用拓展3如图,在ABC中,C=70,BC=4,AC=4,现将ABC沿CB方向平移到ABC的位置(1)若平移的距离为3,求ABC与ABC重叠部分的面积(2)若平移的距离为x(0x4),求ABC与ABC重叠部分的面积y,写出y与x的关系式 五、归纳小结(学生归纳,老师点评)六、当堂检测(一)选择题1在英文字母VWXYZ中,是中心对称的英文字母的个数有( )个 A1 B2 C3 D42下面的图案中,是中心
27、对称图形的个数有( )个 A1 B2 C3 D43如图,把一张长方形ABCD的纸片,沿EF折叠后,ED与BC的交点为G,点D、C分别落在D、C的位置上,若EFG=55,则1=( )A55 B125 C70 D110(二)填空题1关于某一点成中心对称的两个图形,对称点连线必通过_2把一个图形绕着某一个点旋转180,如果它能够与另一个图形重合,那么就说这两个图形是_图形3用两个全等的直角非等腰三角形可以拼成下面图形中的哪几种:_(填序号)长方形;菱形;正方形;一般的平行四边形;等腰三角形;梯形三、综合提高题1仔细观察所列的26个英文字母,将相应的字母填入下表中适当的空格内A B C D E F G
28、 H I J K L M N O P Q R S T U V W X Y Z对称形式 轴对称旋转对称中心对称只有一条对称轴有两条对称轴2如图,在正方形ABCD中,作出关于P点的中心对称图形,并写出作法3如图,是由两个半圆组成的图形,已知点B是AC的中点,画出此图形关于点B成中心对称的图形1.4 图形的中心对称(2) 审核人:张宏教学目标 1.理解关于中心对称的两个图形,对称点所连线段都经过对称中心,而且被对称中心所平分;理解关于中心对称的两个图形是全等图形;掌握这两个性质的运用 2.复习中心对称的基本概念(中心对称、对称中心,关于中心的对称点),提出问题,让学生分组讨论解决问题,老师引导总结中
29、心对称的基本性质重难点、关键1重点:中心对称的两条基本性质及其运用2难点与关键:让学生合作讨论,得出中心对称的两条基本性质一、复习引入1什么叫中心对称?什么叫对称中心?2什么叫关于中心的对称点?3请同学随便画一三角形,以三角形一顶点为对称中心,画出这个三角形关于这个对称中心的对称图形,并分组讨论能得到什么结论 探索新知例1如图,已知ABC和点O,画出DEF,使DEF和ABC关于点O成中心对称 例2(学生练习,老师点评)如图,已知四边形ABCD和点O,画四边形ABCD,使四边形ABCD和四边形ABCD关于点O成中心对称(只保留作图痕迹,不要求写出作法) 二、巩固练习1如图等边ABC内有一点O,试
30、说明:OA+OBOC 四、归纳小结(学生总结,老师点评)中心对称的两条基本性质: 1关于中心对称的两个图形,对应点所连线都经过对称中心,而且被对称中心所平分; 2关于中心对称的两个图形是全等图形及其它们的应用五、 当堂检测一、选择题1下面图形中既是轴对称图形又是中心对称图形的是( ) A直角 B等边三角形 C直角梯形 D两条相交直线2下列命题中真命题是( ) A两个等腰三角形一定全等 B正多边形的每一个内角的度数随边数增多而减少 C菱形既是中心对称图形,又是轴对称图形 D两直线平行,同旁内角相等3将矩形ABCD沿AE折叠,得到如图的所示的图形,已知CED=60,则AED的大小是( )A60 B
31、50 C75 D55二、填空题1关于中心对称的两个图形,对称点所连线段都经过_,而且被对称中心所_2关于中心对称的两个图形是_图形3线段既是轴对称图形又是中心对称图形,它的对称轴是_,它的对称中心是_三、综合提高题1分别画出与已知四边形ABCD成中心对称的四边形,使它们满足以下条件:(1)以顶点A为对称中心,(2)以BC边的中点K为对称中心2如图,已知一个圆和点O,画一个圆,使它与已知圆关于点O成中心对称3如图,A、B、C是新建的三个居民小区,我们已经在到三个小区距离相等的地方修建了一所学校M,现计划修建居民小区D,其要求:(1)到学校的距离与其它小区到学校的距离相等;(2)控制人口密度,有利
32、于生态环境建设,试写居民小区D的位置1.5 梯形主备人:张宏 审核人:张辉教学目标:1、掌握梯形的相关概念和等腰梯形的特征,培养学生初步应用等腰梯形特征解决问题的能力.2、使学生经历探究等腰梯形特征的过程,体会探索问题的方法,渗透转化的思想.3、通过合作交流增强团队意识,体验成功的喜悦.教学重点、难点:重点: 探索等腰梯形特征.难点: 运用轴对称性和转化的思想研究等腰梯形的特征.教学过程:(1)我欣赏 我发现引例:欣赏一段录像,并观察录像中的物体可以抽象成哪些几何图形.从而引出课题梯形认识梯形的各元素,介绍常见的等腰梯形和直角梯形(2)我实践 我感悟活动一:在你的黄色梯形纸板上画出一至两条线段
33、,将梯形分割成已学过的几何图形. 分析、讲解分割的过程及结果(3)我探究 我说理活动二:1.在半透明的方格纸上画一个等腰梯形ABCD.2.借助所画等腰梯形探究其特征,试着说明理由.半透明的方格纸是由一张方格纸在其上面放一张半透明纸形成的,这样学生可以充分利用方格纸的格在半透明纸上画出等腰梯形,并利用半透明纸的特点将所画的等腰梯形进行折叠等活动研究发现其特征 验证所得到的结论,从而归纳得出等腰梯形的特征延长等腰梯形的两腰,看看有什么发现,并写出求解的过程(4)我应用 我能行1.如图所示,在梯形ABCD中,如果ADBC.AB=CD,B=60,ACAB,那么ACD= _,D=_.2、如图,在梯形AB
34、CD中,ABDC,M、N分别是两条对角线BD、AC的中点,说明:MNDC且MN(DCAB).当堂检测一、选择题 1.有两个角相等的梯形是( ) A.等腰梯形 B.直角梯形; C.一般梯形 D.直角梯形或等腰梯形 2.下列命题正确的是( ) A.凡是梯形对角线都相等; B.一组对边平行,另一组对边相等的四边形是梯形 C.同一底上的两个角相等的梯形是等腰梯形; D.只有两个角相等的梯形是等腰梯形 3.在四边形ABCD中,ADDC,AC=BD,则四边形ABCD中( ) A.平行四边形 B.等腰梯形; C.矩形 D.等腰梯形或矩形 4.下列命题,错误命题的个数是( ) 若一个梯形是轴对称图形,则此梯形
35、一定是等腰梯形;等腰梯形的两腰的延长线与经过两底中点的直线必交于一点; 一组对边相等而另一组对边不相等的四边形是梯形;有两个内角是直角的四边形是直角梯形. A.1个 B.2个 C.3个 D.4个 5.已知梯形的中位线长为24厘米,上、下底的比为1:3,则梯形的上、 下底之差是( ) A.24厘米 B.12厘米; C.36厘米 D.48厘米二、填空题1.如图所示,在梯形ABCD中,BCAD,DEAB,DE=DC,A=100,则B=_,C=_,ADC=_,EDC=_. 2.等腰梯形的上、下底长分别为6cm,8cm, 且有一个角是60 , 则它的腰长为_. 3.如果等腰梯形的高等于腰长的一半,则它的四个角分别等于_. 4.已知梯形的两个对角分别是78和120,则另两个角分别是 。三、解答题1、如图,梯形ABCD中,ADBC,对角线ACBD,且ACBD,且AC5cm,BC12cm,求该梯形的中位线长.2、梯形ABCD中,ADBC,点E是AB中点,连结EC、ED、CEDE,CD、AD与BC三条线段之间有什么样的数量关系?请说明理由。3、已知:如图,等腰梯形ABCD中,AB=CD,AD/BC,点E、F、G分别在边AB、BC、CD上,AE=GF=GC。(1)求证:四边形AEFG是平行四边行。(