《2022年高中数学知识点总结) .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学知识点总结) .pdf(7页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、上海教材高中数学知识点总结一、集合与常用逻辑1集合概念元素:互异性、无序性2集合运算全集 U:如 U=R 交集:BxAxxBA且并集:BxAxxBA或补集:AxUxxACU且3集合关系空集A子集BA: 任意BxAxBABBABAABA注:数形结合 - 文氏图、数轴4四种命题原命题:若p则q逆命题:若q则p否命题:若p则q逆否命题:若q则p原命题逆否命题否命题逆命题5充分必要条件p 是 q 的充分条件:qPp 是 q 的必要条件:qPp 是 q 的充要条件: p? q 6复合命题的真值q 真(假) ? “q”假(真)p、q 同真 ? “pq”真p、q 都假 ? “pq”假7. 全称命题、存在性命
2、题的否定M, p(x )否定为 : M, )(XpM, p(x )否定为 : M, )(Xp二、不等式1一元二次不等式解法名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 1 页,共 7 页 - - - - - - - - - 若0a,02cbxax有两实根,)(,则02cbxax解集),(02cbxax解集),(),(注:若0a,转化为0a情况2其它不等式解法转化axaax22axaxax或ax22ax0)()(xgxf0)()(xgxf)()(xgxfaa)()(xgxf(a1))
3、(log)(logxgxfaaf xf xg x( )( )( )0(01a)3基本不等式abba222若Rba,,则abba2注:用均值不等式abba2、2)2(baab求最值条件是“一正二定三相等”三、函数概念与性质1奇偶性f(x) 偶函数()( )fxf xf(x)图象关于y轴对称f(x) 奇函数()( )fxf xf(x) 图象关于原点对称注: f(x)有奇偶性定义域关于原点对称f(x)奇函数 , 在 x=0 有定义f(0)=0 “奇+奇=奇” (公共定义域内)2单调性f(x) 增函数: x1x2f(x1) f(x2) 或 x1x2f(x1) f(x2) 或0)()(2121xxxfx
4、f名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 2 页,共 7 页 - - - - - - - - - f(x) 减函数:?注:判断单调性必须考虑定义域f(x)单调性判断定义法、图象法、性质法“增+增=增”奇函数在对称区间上单调性相同偶函数在对称区间上单调性相反3周期性T是( )f x 周期()( )f x Tf x 恒成立(常数0T)4二次函数解析式: f(x)=ax2+bx+c,f(x)=a(x-h)2+k f(x)=a(x-x1)(x-x2) 对称轴:abx2顶点:)44,2
5、(2abacab单调性: a0,2,(ab递减,),2ab递增当abx2,f(x)minabac442奇偶性: f(x)=ax2+bx+c 是偶函数b=0 闭区间上最值:配方法、图象法、讨论法- 注意对称轴与区间的位置关系注:一次函数f(x)=ax+b奇函数b=0 四、基本初等函数1指数式)0(10aannaa1mnmnaa2对数式bNalogNab(a0,a 1)NMMNaaalogloglogNMNMaaalogloglogMnManaloglogabbmmalogloglogablglgnaabbnl o gl o gabl o g1名师资料总结 - - -精品资料欢迎下载 - - -
6、- - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 3 页,共 7 页 - - - - - - - - - 注:性质01loga1log aaNaNalog常用对数NN10loglg,15lg2lg自然对数NNelogln,1ln e3指数与对数函数y=ax与 y=logax定义域、值域、过定点、单调性?注: y=ax与 y=logax 图象关于 y=x 对称(互为反函数)4幂函数12132,xyxyxyxyxy在第一象限图象如下:五、函数图像与方程1描点法函数化简定义域讨论性质(奇偶、单调)取特殊点如零点、最值点等2图象变换平移:“左加右
7、减,上正下负”)()(hxfyxfy伸缩:)1()(xfyxfy倍来的每一点的横坐标变为原对称:“对称谁,谁不变,对称原点都要变”1010名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 4 页,共 7 页 - - - - - - - - - )()()()()()(xfyxfyxfyxfyxfyxfyyx原点轴轴注:)(xfyax直线)2(xafy翻折:)(xfy|( ) |yf x保留x轴上方部分,并将下方部分沿x轴翻折到上方y=f(x)cbaoyxy=|f(x)|cbaoyx)(
8、xfy(|)yfx保留y轴右边部分,并将右边部分沿y轴翻折到左边y=f(x)cbaoyxy=f(|x|)cbaoyx3零点定理若0)()(bfaf,则)(xfy在),(ba内有零点(条件:)(xf在,ba上图象连续不间断)注:)(xf零点:0)(xf的实根在,ba上连续的单调函数)(xf,0)()(bfaf则)(xf在),(ba上有且仅有一个零点二分法判断函数零点-0)()(bfaf?六、三角函数1概念第二象限角)2,22(kk(Zk) 2弧长rl扇形面积lrS213定义rysinrxcosxytan名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - -
9、- - - - - 名师精心整理 - - - - - - - 第 5 页,共 7 页 - - - - - - - - - 其中),(yxP是终边上一点,rPO4符号“一正全、二正弦、三正切、四余弦”5诱导公式 : “奇变偶不变,符号看象限”如sin)2(Sin,sin)2/cos(6特殊角的三角函数值0 643223sin0 2122231 0 1cos1 2322210 10 tg0 331 3/ 0 / 7基本公式同角1cossin22tancossin和差sincoscossinsinsinsincoscoscostantan1tantantan倍角cossin22sin2222sin2
10、11cos2sincos2cos2tan1tan22tan降幂 cos2=22cos1 sin2=22cos1叠加)4sin(2cossin)6sin(2cossin3)sin(cossin22baba)(tanba8三角函数的图象性质y=sinx y=cosx y=tanx 名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 6 页,共 7 页 - - - - - - - - - 单调性:)2,2(增), 0(减)2,2(增注:Zk9解三角形基本关系 :sin(A+B)=sinC co
11、s(A+B)=-cosC tan(A+B)=-tanC 2cos2sinCBA正弦定理 :Aasin=Bbsin=CcsinARasin2CBAcbasi n:s in:s i n:余弦定理 :a2=b2+c22bccosA(求边)cosA=bcacb2222(求角)面积公式 :S21absinC注:ABC中, A+B+C= ?BABAsinsina2b2+c2 ?A2图象sinx cosx tanx 值域-1 ,1 -1 ,1 无奇偶奇函数偶函数奇函数周期22对称轴2/kxkx无中心0,k0,2/k0, 2/k名师资料总结 - - -精品资料欢迎下载 - - - - - - - - - - - - - - - - - - 名师精心整理 - - - - - - - 第 7 页,共 7 页 - - - - - - - - -