《2022年高中数学知识点总结归纳 .pdf》由会员分享,可在线阅读,更多相关《2022年高中数学知识点总结归纳 .pdf(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、名师总结精品知识点高中数学必修5 知识点1、正弦定理:在C中,a、b、c分别为角、C的对边,R为C的外接圆的半径,则有2sinsinsinabcRC2、正弦定理的变形公式:2 sinaR,2 sinbR,2sincRC;sin2aR,sin2bR,sin2cCR;:sin:sin:sina b cC;sinsinsinsinsinsinabcabcCC3、三角形面积公式:111sinsinsin222CSbcabCac4、余弦定理:在C中,有2222cosabcbc,2222cosbacac,2222coscababC5、余弦定理的推论:222cos2bcabc,222cos2acbac,22
2、2cos2abcCab6、设a、b、c是C的角、C的对边,则:若222abc,则90C;若222abc,则90C;若222abc,则90C7、数列:按照一定顺序排列着的一列数8、数列的项:数列中的每一个数9、有穷数列:项数有限的数列10、无穷数列:项数无限的数列11、递增数列:从第2 项起,每一项都不小于它的前一项的数列12、递减数列:从第2 项起,每一项都不大于它的前一项的数列13、常数列:各项相等的数列14、摆动数列:从第2 项起,有些项大于它的前一项,有些项小于它的前一项的数列15、数列的通项公式:表示数列na的第n项与序号n之间的关系的公式16、数列的递推公式:表示任一项na与它的前一
3、项1na(或前几项)间的关系的公式17、如果一个数列从第2 项起,每一项与它的前一项的差等于同一个常数,则这个数列称为等差数列,这个常数称为等差数列的公差18、由三个数a,b组成的等差数列可以看成最简单的等差数列,则称为a与b的等差中项若2acb,则称b为a与c的等差中项19、若等差数列na的首项是1a,公差是d,则11naand精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 1 页,共 4 页名师总结精品知识点20、通项公式的变形:nmaan md;11naand;11naadn;11naand;nmaadnm21、若na是等差数列, 且mnpq
4、(m、n、p、*q) , 则mnpqaaaa;若na是等差数列,且2npq(n、p、*q) ,则2npqaaa22、等差数列的前n项和的公式:12nnn aaS;112nn nSnad23、 等 差 数 列 的 前n项 和 的 性 质 : 若 项 数 为*2n n, 则21nnnSn aa, 且SSnd偶奇,1nnSaSa奇偶 若 项 数 为*21nn, 则2121nnSna, 且nSSa奇偶,1SnSn奇偶( 其 中nSn a奇,1nSna偶) 24、如果一个数列从第2项起,每一项与它的前一项的比等于同一个常数,则这个数列称为等比数列,这个常数称为等比数列的公比25、 在a与b中间插入一个数
5、G, 使a,G,b成等比数列, 则G称为a与b的等比中项 若2Gab,则称G为a与b的等比中项26、若等比数列na的首项是1a,公比是q,则11nnaa q27、 通 项 公 式 的 变 形 : n mnmaa q; 11nnaa q; 11nnaqa; nmnmaqa28、若na是等比数列,且mnpq(m、n、p、*q) ,则mnpqaaaa;若na是等比数列,且2npq(n、p、*q) ,则2npqaaa29、等比数列na的前n项和的公式:11111111nnnnaqSaqaa qqqq精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 2 页,共
6、 4 页名师总结精品知识点30、等比数列的前n项和的性质:若项数为*2n n,则SqS偶奇nnmnmSSqSnS,2nnSS,32nnSS成等比数列31、0abab;0abab;0abab32、不等式的性质:abba;,ab bcac;abacbc;,0ab cacbc,,0ab cacbc;,ab cdacbd;0,0abcdacbd;0,1nnababnn;0,1nnabab nn33、一元二次不等式:只含有一个未知数,并且未知数的最高次数是2的不等式34、二次函数的图象、一元二次方程的根、一元二次不等式的解集间的关系:判别式24bac000二次函数2yaxbxc0a的图象一元二次方程20
7、axbxc0a的根有两个相异实数根1,22bxa12xx有两个相等实数根122bxxa没有实数根一元二次不等式的解集20axbxc0a12x xxxx或2bx xaR20axbxc0a12x xxx35、二元一次不等式:含有两个未知数,并且未知数的次数是1的不等式36、二元一次不等式组:由几个二元一次不等式组成的不等式组精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 3 页,共 4 页名师总结精品知识点37、二元一次不等式(组)的解集:满足二元一次不等式组的x和y的取值构成有序数对, x y,所有这样的有序数对, x y构成的集合38、在平面直角坐
8、标系中,已知直线0 xyC,坐标平面内的点00,xy若0,000 xyC,则点00,xy在直线0 xyC的上方若0,000 xyC,则点00,xy在直线0 xyC的下方39、在平面直角坐标系中,已知直线0 xyC若0,则0 xy C表示直线0 xyC上方的区域;0 xyC表示直线0 xyC下方的区域若0,则0 xy C表示直线0 xyC下方的区域;0 xyC表示直线0 xyC上方的区域40、线性约束条件:由x,y的不等式(或方程)组成的不等式组,是x,y的线性约束条件目标函数:欲达到最大值或最小值所涉及的变量x,y的解析式线性目标函数:目标函数为x,y的一次解析式线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题可行解:满足线性约束条件的解, x y可行域:所有可行解组成的集合最优解:使目标函数取得最大值或最小值的可行解41、设a、b是两个正数, 则2ab称为正数a、b的算术平均数,ab称为正数a、b的几何平均数42、均值不等式定理:若0a,0b,则2abab,即2abab43、常用的基本不等式:222,abab a bR;22,2ababa bR;20,02ababab;222,22ababa bR精选学习资料 - - - - - - - - - 名师归纳总结 - - - - - - -第 4 页,共 4 页