BB正弦函数、余弦函数的性质(第2课时).ppt

上传人:豆**** 文档编号:34171342 上传时间:2022-08-14 格式:PPT 页数:21 大小:1,020KB
返回 下载 相关 举报
BB正弦函数、余弦函数的性质(第2课时).ppt_第1页
第1页 / 共21页
BB正弦函数、余弦函数的性质(第2课时).ppt_第2页
第2页 / 共21页
点击查看更多>>
资源描述

《BB正弦函数、余弦函数的性质(第2课时).ppt》由会员分享,可在线阅读,更多相关《BB正弦函数、余弦函数的性质(第2课时).ppt(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、x22322523yO23225311复习:正弦函数对称性复习:正弦函数对称性对称轴:对称轴:,2xkkZ 对称中心:对称中心:(,0)kkZ 特点:特点:Y=0特点:特点:Y=1或或Y=-1复习:余弦函数对称性复习:余弦函数对称性, 0, 2x 对称轴:对称轴:,xkkZ 35(,0),(,0),(,0),(,0)2222 对称中心:对称中心:(,0)2kkZ PPx22322523yO23225311特点:特点:Y=1或或Y=-1特点:特点:Y=0例例 题题 求求 函数的对称轴和对称中心函数的对称轴和对称中心sin(2)3yx 23zx 解解(1)令)令则则sin(2)sin3yxz si

2、nyz 的对称轴为的对称轴为,2zkkZ 232xk 解得:对称轴为解得:对称轴为,122xkkZ(2)sinyz 的对称中心为的对称中心为(,0) ,kkZ 23xk 对称中心为对称中心为62xk zk (,0) ,Z62kk 1、_,则,则f(x)在这个区间上是)在这个区间上是增增函数函数.)()(21xfxf4.4.正弦余弦函数的单调性正弦余弦函数的单调性函数函数( ),yf x若在指定区间任取若在指定区间任取 ,12x x、且且 ,都有:,都有:21xx函数的单调性反映了函数在一个区间上的走向。函数的单调性反映了函数在一个区间上的走向。观察正余弦函数的图象,探究其单调性观察正余弦函数的

3、图象,探究其单调性2、_,则,则f(x)在这个区间上是)在这个区间上是减减函数函数.)()(21xfxf增函数:上升增函数:上升减函数:下降减函数:下降探究:正弦函数的单调性探究:正弦函数的单调性25232223,25,、,、 当当 在区间在区间上时,上时,x曲线逐渐上升,曲线逐渐上升,sin的值由的值由 增大到增大到 。11753357,22222 222、,、 , 、当当 在区间在区间x上时,曲线逐渐下降,上时,曲线逐渐下降, sin的值由的值由 减小到减小到 。11x22322523yO23225311取近不取远、取正不取负取近不取远、取正不取负探究:正弦函数的单调性探究:正弦函数的单调

4、性x22322523yO23225311正弦函数在每个闭区间正弦函数在每个闭区间)(22,22Zkkk都是增函数,其值从都是增函数,其值从1增大到增大到1;而在每个闭区间而在每个闭区间32,2()22kkkZ上都是上都是减函数,其值从减函数,其值从1减小到减小到1。取近不取远、取正不取负取近不取远、取正不取负探究:正弦函数的最大值和最小值探究:正弦函数的最大值和最小值最大值:最大值:2x当当 时,时, 有最大值有最大值1yk2最小值:最小值:2x当当 时,时,有最小值有最小值1yk2x22322523yO23225311取近不取远、取正不取负取近不取远、取正不取负探究:余弦函数的单调性探究:余

5、弦函数的单调性 3 , 2 0 2 3 ,4 、,、 ,当当 在区间在区间x上时,上时,曲线逐渐上升,曲线逐渐上升,cos的值由的值由 增大到增大到 。11曲线逐渐下降,曲线逐渐下降,cos的值由的值由 减小到减小到 。11 2 , 0 23 、,、 ,当当 在区间在区间x上时,上时,x22322523yO23225311取近不取远、取正不取负取近不取远、取正不取负探究:余弦函数的单调性探究:余弦函数的单调性x22322523yO23225311由余弦函数的周期性知:由余弦函数的周期性知:其值从其值从1减小到减小到1。而在每个闭区间而在每个闭区间上都是减函数,上都是减函数,2,2kk 其值从其

6、值从1增大到增大到1 ;在每个闭区间在每个闭区间2,2kk都是都是增函数增函数,取近不取远、取正不取负取近不取远、取正不取负探究:余弦函数的最大值和最小值探究:余弦函数的最大值和最小值最大值:最大值:0 x当当 时,时, 有最大值有最大值1yk2最小值:最小值:x当当 时,时,有最小值有最小值1yk2x22322523yO23225311取近不取远、取正不取负取近不取远、取正不取负yxo; 1,22, 1,22取得最小值时当且仅当取得最大值时正弦函数当且仅当ZkkxZkkx. 1,2, 1,2时取得最小值当且仅当时取得最大值余弦函数当且仅当ZkkxZkkx例例1.P38下列函数有最大、最小值吗

7、?如果有,请写出取最大、下列函数有最大、最小值吗?如果有,请写出取最大、最小值时的自变量最小值时的自变量x的集合,并说出最大、最小值分别是什么的集合,并说出最大、最小值分别是什么.cos1,3sin2 ,.yxxRyx xR (1);(2)解:解:这两个函数都有最大值、最小值这两个函数都有最大值、最小值.(1)使函数)使函数 取得最大值的取得最大值的x的集合,就是的集合,就是使函数使函数 取得最大值的取得最大值的x的集合的集合cos1,yxxRcos ,yx xR |2,x xkkZ 使函数使函数 取得最小值的取得最小值的x的集合,就是的集合,就是使函数使函数 取得最小值的取得最小值的x的集合

8、的集合cos1,yxxRcos ,yx xR |(21) ,x xkkZ 函数函数 的最大值是的最大值是1+1=2;最小值是;最小值是-1+1=0.cos1,yxxR例例1.下列函数有最大、最小值吗?如果有,请写出取最大、最小下列函数有最大、最小值吗?如果有,请写出取最大、最小值时的自变量值时的自变量x的集合,并说出最大、最小值分别是什么的集合,并说出最大、最小值分别是什么.cos1,3sin2 ,.yxxRyx xR (1);(2)解:解:(2)令)令t=2x,因为使函数因为使函数 取最大值的取最大值的t的集合是的集合是3sin ,yt tR |2,2t tkkZ 222xtk 由由4xk

9、得得所以使函数所以使函数 取最大值的取最大值的x的集合是的集合是3sin2 ,yx xR |,4x xkkZ 同理,使函数同理,使函数 取最小值的取最小值的x的集合是的集合是3sin2 ,yx xR |,4x xkkZ函数函数 取最大值是取最大值是3,最小值是,最小值是-3。3sin2 ,yx xR 分析:比较同名函数值的大小,往往可以利用函数的单调性,但需要考虑它是否在同一单调区间上,若是,即可判断,若不是,需化成同一单调区间后再作判断。0)10sin()18sin()18sin()10sin(即53cos523cos)523cos() 2(、4cos417cos)417cos(练习练习(P

10、38例例4)不求值,判断下列各式的符号。)不求值,判断下列各式的符号。)10sin()18sin(1、)417cos()523cos(2、解:上增函数。在且、2,2sin,2181021xy上是减函数在且, 0cos,5340 xy 04cos53cos4cos53cos即2317cos()cos()054x22322523yO23225311练习P40 1x22322523yO23225311x(1)sin 0:x22322523yO23225311(0,) 2k 2k (2)sin0:x ()0, 2k 2k (1)cos0:x ()22, 2k 2k kZ kZ kZ (2)cos0:x

11、 (22,3) 2k 2k kZ 练习练习P40 4先画草图,然后根据草图判断先画草图,然后根据草图判断x22322523yO23225344xysin4,x例题例题x22322523yO23225311求使函数求使函数 取得最大值、最小值的取得最大值、最小值的自变量的集合,并写出最大值、最小值。自变量的集合,并写出最大值、最小值。)22cos(3xy化未知为已知化未知为已知分析:分析:令令22xz则则zysin3小结小结1.1.能根据图象说出函数的单调性和最值。能根据图象说出函数的单调性和最值。zAyxAysin)sin(. 2化未知为已知化未知为已知练习x22322523yO23225311x22322523yO23225311

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 教案示例

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁