人教版初中数学课本知识点归纳.doc

上传人:模** 文档编号:34109337 上传时间:2022-08-12 格式:DOC 页数:137 大小:8.35MB
返回 下载 相关 举报
人教版初中数学课本知识点归纳.doc_第1页
第1页 / 共137页
人教版初中数学课本知识点归纳.doc_第2页
第2页 / 共137页
点击查看更多>>
资源描述

《人教版初中数学课本知识点归纳.doc》由会员分享,可在线阅读,更多相关《人教版初中数学课本知识点归纳.doc(137页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版七年级上册数学课本知识点归纳第一章有理数(一) 正负数1正数:大于0的数。2负数:小于0的数。30即不是正数也不是负数。4正数大于0,负数小于0,正数大于负数。(二)有理数1有理数:由整数和分数组成的数。包括:正整数、0、负整数,正分数、负分数。可以写成两个整之比的形式。(无理数是不能写成两个整数之比的形式,它写成小数形式,小数点后的数字是无限不循环的。如:)2整数:正整数、0、负整数,统称整数。3分数:正分数、负分数。(三)数轴1数轴:用直线上的点表示数,这条直线叫做数轴。(画一条直线,在直线上任取一点表示数0,这个零点叫做原点,规定直线上从原点向右或向上为正方向;选取适当的长度为单位

2、长度,以便在数轴上取点。)2数轴的三要素:原点、正方向、单位长度。3相反数:只有符号不同的两个数叫做互为相反数。0的相反数还是0。4绝对值:正数的绝对值是它本身,负数的绝对值是它的相反数;0的绝对值是0,两个负数,绝对值大的反而小。(四)有理数的加减法1先定符号,再算绝对值。2加法运算法则:同号相加,到相同符号,并把绝对值相加。异号相加,取绝对值大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。一个数同0相加减,仍得这个数。3加法交换律:a+b= b+ a 两个数相加,交换加数的位置,和不变。4加法结合律:(a+b)+ c = a +(b+ c )三个数相加,先把前

3、两个数相加,或者先把后两个数相加,和不变。5 ab = a +(b)减去一个数,等于加这个数的相反数。(五)有理数乘法(先定积的符号,再定积的大小)1同号得正,异号得负,并把绝对值相乘。任何数同0相乘,都得0。2乘积是1的两个数互为倒数。3乘法交换律:ab= b a4乘法结合律:(ab)c = a (b c)5乘法分配律:a(b +c)= a b+ ac(六)有理数除法1先将除法化成乘法,然后定符号,最后求结果。2除以一个不等于0的数,等于乘这个数的倒数。3两数相除,同号得正,异号得负,并把绝对值相除,0除以任何一个不等于0的数,都得0。(七)乘方1求n个相同因数的积的运算,叫做乘方。写作an

4、。(乘方的结果叫幂,a叫底数,n叫指数)2负数的奇数次幂是负数,负数的偶次幂是正数;0的任何正整数次幂都是0。3同底数幂相乘,底不变,指数相加。4同底数幂相除,底不变,指数相减。(八)有理数的加减乘除混合运算法则1先乘方,再乘除,最后加减。2同级运算,从左到右进行。3如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。(九)科学记数法、近似数、有效数字。第二章整式(一)整式1整式:单项式和多项式的统称叫整式。2单项式:数与字母的乘积组成的式子叫单项式。单独的一个数或一个字母也是单项式。3系数;一个单项式中,数字因数叫做这个单项式的系数。4。次数:一个单项式中,所有字母的指数和叫做这个

5、单项式的次数。5多项式:几个单项式的和叫做多项式。6项:组成多项式的每个单项式叫做多项式的项。7常数项:不含字母的项叫做常数项。8多项式的次数:多项式中,次数最高的项的次数叫做这个多项式的次数。9同类项:多项式中,所含字母相同,并且相同字母的指数也相同的项叫做同类项。10合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。(二) 整式加减整式加减运算时,如果遇到括号先去括号,再合并同类项。1去括号:一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项。如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同。如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符

6、号相反。2合并同类项:把多项式中的同类项合并成一项,叫做合并同类项。合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变第三章一元一次方程分析实际问题中的数量关系,利用其中的相等关系列出方程,是用数学解决实际问题的一种方法。(一)方程:先设字母表示未知数,然后根据相等关系,写出含有未知数的等式叫方程。(二)一元一次方程。1一元一次方程:方程里只含有一个未知数(元),未知数的次数都是1,这样的方程叫做一元一次方程。2解:求出的方程中未知数的值叫做方程的解。(二)等式的性质1等式两边加(或减)同一个数(或式子),结果仍相等。如果a=b,那么ac= bc2等式两边乘同一个数,或除以同

7、一个不为0的数,结果仍相等。如果a=b,那么ac= bc;如果a=b,(c0),那么ac= bc。(三)解方程的步骤解一元一次方程的步骤:去分母、去括号、移项、合并同类项,未知数系数化为1。1去分母:把系数化成整数。2去括号3移项:把等式一边的某项变号后移到另一边。4合并同类项5系数化为1第四章图形认识初步一、图形认识初步1几何图形:把从实物中抽象出来的各种图形的统称。2平面图形:有些几何图形的各部分都在同一平面内,这样的图形是平面图形。3立体图形:有些几何图形的各部分不都在同一平面内,这样的图形是立体图形。4展开图:有些立体图形是由一些平面图形围成的,将它们的表面适当剪开,可以展开成平面图形

8、,这样的平面图形称为相应立体图形的展开图。5点,线,面,体图形是由点,线,面构成的。线与线相交得点,面与面相交得线。点动成线,线动成面,面动成体。二、直线、线段、射线1线段:线段有两个端点。2射线:将线段向一个方向无限延长就形成了射线。射线只有一个端点。3直线:将线段的两端无限延长就形成了直线。直线没有端点。4两点确定一条直线:经过两点有一条直线,并且只有一条直线。5相交:两条直线有一个公共点时,称这两条直线相交。6两条直线相交有一个公共点,这个公共点叫交点。7中点:M点把线段AB分成相等的两条线段AM与MB,点M叫做线段AB的中点。8线段的性质:两点的所有连线中,线段最短。(两点之间,线段最

9、短)9距离:连接两点间的线段的长度,叫做这两点的距离。三、角1角:有公共端点的两条射线组成的图形叫做角。2角的度量单位:度、分、秒。3角的度量与表示:角由两条具有公共端点的射线组成,两条射线的公共端点是这个角的顶点。一度的1/60是一分,一分的1/60是一秒。角的度、分、秒是60进制。4角的比较:角也可以看成是由一条射线绕着他的端点旋转而成的。平角和周角:一条射线绕着他的端点旋转,当终边和始边成一条直线时,所成的角叫做平角。始边继续旋转,当他又和始边重合时,所成的角叫做周角。平角等于180度。周角等于360度。直角等于90度。平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条

10、射线叫做这个角的平分线。工具:量角器、三角尺、经纬仪。5余角和补角余角:两个角的和等于90度,这两个角互为余角。即其中每一个是另一个角的余角。补角:两个角的和等于180度,这两个角互为补角。即其中一个是另一个角的补角。补角的性质:等角的补角相等余角的性质:等角的余角相等初一上册数学第一章“有理数”知识点小结(人教版)初一上册数学第一章“有理数”练习题及答案(人教版)初一上册数学第四章“图形初步认识”练习题及答案(人教版)中国教育在线2014-08-14第五章 相交线与平行线一、相交线相交线:如果两条直线只有一个公共点,就说这两条直线相交,该公共点叫做两直线的交点。如直线AB、CD相交于点O。A

11、DCOB对顶角:两条直线相交出现对顶角。顶点相同,角的两边互为反向延长线.,满足这种关系的角,互为对顶角,对顶角相等。对顶角是成对出现的。邻补角:有一条公共边,角的另一边互为反向延长线.满足这种关系的两个角,互为领补角。邻补角与补角的区别与联系v 1.邻补角与补角都是针对两个角而言的,而且数量关系都是两角之和为180v 2.互为邻补角的两个角一定互补,但是互为补角的两个角不一定是邻补角即:互补的两个角只注重数量关系而不谈位置,而互为邻补角的两个角既要满足数量关系又要满足位置关系。领补角与对顶角的比较二、垂线垂直:当两条直线相交所成的四个角中,有一个角是直角时,这两条直线互相垂直,其中一条直线叫

12、另一条直线的垂线,它们的交点叫垂足。baO从垂直的定义可知,判断两条直线互相垂直的关键:要找到两条直线相交时四个交角中一个角是直角。垂直的表示:用“”和直线字母表示垂直例如:如图,a、b互相垂直,O叫垂足.a叫b的垂线,b也叫a的垂线。则记为:ab或ba; 若要强调垂足,则记为:ab, 垂足为O.垂直的书写形式: 如图,当直线AB与CD相交于O点,AOD=90时,ABCD,垂足为O。书写形式:DAOAOD=90(已知)ABCD(垂直的定义)反之,若直线AB与CD垂直,垂足为O,那么,AOD=90。C书写形式: ABCD (已知)B AOD=90 (垂直的定义)应用垂直的定义:AOC=BOC=B

13、OD=90垂线的画法:BAl如图,已知直线 l 和l上的一点A ,作l的垂线. 则所画直线AB是过点A的直线l的垂线. 工具:直尺、三角板1放:放直尺,直尺的一边要与已知直线重合;2靠:靠三角板,把三角板的一直角边靠在直尺上;3移:移动三角板到已知点;4画线:沿着三角板的另一直角边画出垂线.垂线的性质:1、同一平面内,过一点有且只有一条直线与已知直线垂直.2、连接直线外一点与直线上各点的所有线段中,垂线段最短,或说成垂线段最短。直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 FEDCBA87654321三、同位角、内错角、同旁内角(出现在一条直线与两条直线分别相交的情形)同位角:一边

14、都在截线上而且同向,另一边在截线同侧的两个角。如1和5,4和8。内错角:一边都在截线上而且反向,另一边在截线两侧的两个角。(两个角在两条截线内)如3和5,4和6。同旁内角:一边都在截线上而且反向,另一边在截线同旁的两个角。(两个角在两条截线内)如3和6,4和5。同位角、内错角、同旁内角的比较四、平行线平行线:在同一平面内,不相交的两条直线叫做平行线。平行线的表示: 我们通常用符号“/”表示平行。任意两条直线,有两种位置关系,一种是相交,另一种是平行。平行线的画法:P已知直线a和直线外的一个已知点P,经过点P画一条直线与已知直线a平行。一、帖(线)二、靠(尺)a三、移(点)四、画(线)平行公理:

15、经过直线外一点,有且只有一条直线与这条直线平行。平行公理推论:如果两条直线都和第三条直线平行,那么这两条直线也互相平行。 ba b c a cab平行线具有传递性。c12abc五、平行线的判定判定方法1: 两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。 简单说成:同位角相等, 两直线平行32abc判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.34abc判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行在同一平面内,垂直于同一条直线的两条直线互相平行.六、平行

16、线的性质:性质1:两条平行线被第三条直线所截,同位角相等.简单地说:两直线平行,同位角相等.性质2:两条平行线被第三条直线所截,内错角相等.简单地说:两直线平行,内错角相等.性质3:两条平行线被第三条直线所截,同旁内角互补. 简单地说:两直线平行,同旁内角互补.七、命题、定理、证明命题:判断一件事情的语句,叫做命题。命题由题设和结论两部分组成。题设是已知事项,结论是由已知事项推出的事项。数学中的命题常可以写成“如果那么”的形式,“如果”后的部分是题设,“那么”后的部分是结论。 如果题设成立,那么结论一定成立,这样的命题称真命题。命题成立,而结论不一定成立,这样的命题称假命题。定理:有些真命题是

17、基本事实,它们的正确性是经过推理证实的,无需再次进行证明的,这样的真命题叫定理。证明:很多情况下,一个命题的正确性需要经过推理,才能作出判断,这个推理的过程叫做证明。九、平移平移:在平面内,将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移的性质:经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等。平移作图:将线段AB平移,使点A与点D对应。 1、连结AD2、过点B作AD的平行线 3、在平行线上作线段BC,使BC=AD4、连结CD第六章 实数一、平方根算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根。a的算术平方根记为,读作“

18、根号a”,a叫做被开方数。0的算术平方根是0。平方根:如果一个数x的平方等于a,即x2=a (x可能为正数,也可能为负数),那么x就叫做a的平方根(二次方根).开平方:求一个数a的平方根的运算,叫做开平方. 平方与开平方互为逆运算。平方根的表示方法:如果x2=a (a0), 那么x = ,读作“正负根号a”。表示a的正的平方根。表示 a的负的平方根。规定:正数a的正的平方根 叫做a的算数平方根;0的算数平方根是0.归纳:1、正数有两个平方根,它们互为相反数;2、0的平方根是0;3、负数没有平方根。例题1: 方法: 1、把x2当作一个整体,求出x2=a;2、再根据平方根的定义求x.例题2: (1

19、) 81的平方根是 _ 。 (2) 的平方根是 _ 。 二、立方根立方根:若一个数的立方(三次方)等于a,那么这个数叫做 a 的立方根(三次方根)若x 是 a 的立方根,则说明x 3 = a。a 的立方根记为: ,读作“三次根号a”。 根指数被开方数开立方:我们把求立方根的运算称之为开立方,它与立方运算是互逆的。(1) 8 的立方根: (2)- 64 的立方根:归纳:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。平方根和立方根的异同点三、实数无理数:无限不循环小数称为无理数。(开方开不尽的数;含有的数;有规律但不循环的数。) 如,等实数:有理数和无理数统称实数。实数与数轴

20、:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一点都表示一个实数。即实数和数轴上的点是一一对应的。归纳:1、a是一个实数,它的相反数为 -a 2、一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0。(在实数范围内,相反数、绝对值的意义和有理数范围内的相反数、绝对值的意义完全一样。)第七章 平面直角坐标系一、有序数对有序数对:把有顺序的两个数a与b组成的数对叫做有序数对,记做(a,b)。利用有序数对,能准确表示一个位置,这里两个数的顺序不能改变。二、平面直角坐标系平面直角坐标系:平面内两条互相垂直、原点重合的数轴,组成平面直角坐标系。水平方向的数轴称为x轴或

21、横轴,习惯取向右的方向为正方向;竖直方向上的数轴称为y轴或纵轴,习惯取向上的方向为正方向;两坐标轴的交点是平面直角坐标系的原点 . 条数轴互相垂直公共原点满足这三个条件才叫平面直角坐标系注意:坐标轴上的点不属于任何象限。平面直角坐标系中两条数轴特征:(1)互相垂直 (2)原点重合 (3)通常取向上、向右为正方向(4)单位长度一般取相同的平面上点的表示:平面内任意一点P,过P点分别向x、y轴作垂线,垂足在x轴、y轴上对应的数a、b分别叫做点p的横坐标、纵坐标,则有序数对(a,b)叫做点P的坐标,记为P(a,b) 注意:横坐标写在前,纵坐标写在后,中间用逗号隔开.直角坐标系中点的坐标的特点:三、用

22、坐标表示平移平移:把一个图形整体沿某一方向移动一定的距离,图形的这种移动,叫做平移。平移后图形的位置改变,形状、大小不变。我们先试一试:在坐标中描出点A(-2,-3)并进行如下平移:(1)将点A向右平移5个单位长度得到点A1,则 点A1的坐标是_ (2)将点A向左平移3个单位长度得到点A2,则 点A2的坐标是_ (3)将点A向右平移a(ao)个单位长度得到点An,则 点An的坐标是_ (4)将点A向左平移a(ao)个单位长度得到点An,则 点An 的坐标是_总结规律1:图形平移与点的坐标变化的关系(1)左、右平移:原图形上的点(x,y) ,向右平移a个单位,(x+a,y)原图形上的点(x,y)

23、 ,向左平移a个单位,(x-a,y)(2)上、下平移:原图形上的点(x,y) ,向上平移b个单位,(x,y+b)原图形上的点(x,y) ,向下平移b个单位,(x,y-b)总结规律2:图形上点的坐标变化与图形平移间的关系(1)横坐标变化,纵坐标不变:原图形上的点(x,y) ,如果要得到(x+a,y),要向右平移a个单位。原图形上的点(x,y) ,如果要得到(x-a,y),要向左平移a个单位。(2)横坐标不变,纵坐标变化:原图形上的点(x,y) ,如果要得到(x,y+b),要向上平移b个单位。原图形上的点(x,y) ,如果要得到(x,y-b),要向下平移b个单位。(3)横坐标、纵坐标都变化:原图形

24、上的点(x,y) ,如果要得到(x+a,y+b),要向右平移a个单位,向上平移b个单位;原图形上的点(x,y) ,如果要得到(x+a,y-b),要向右平移a个单位,向下平移b个单位;原图形上的点(x,y) ,如果要得到(x-a,y+b),要向左平移a个单位,向上平移b个单位;原图形上的点(x,y) ,如果要得到(x-a,y-b),要向左平移a个单位,向下平移b个单位;第八章 二元一次方程组一、二元一次方程组二元一次方程:含有两个未知数,并且未知数的指数都是 1的方程叫做二元一次方程。 判断下例方程是不是二元一次方程:(1) 3 - 2xy =1 (2)3y-2x =z+5 (3) 2x=1-3

25、y二元一次方程的解:使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解。二元一次方程的解有无数个,可以理解为在一条直线上的点的坐标。二元一次方程组:把含有两个未知数的两个一次方程合在一起,就组成一个二元一次方程组。即两个二元一次方程组成的方程组称二元一次方程组。(两个方程中的未知数相同)二元一次方程组的特点:1.有两个未知数.(二元)2.含未知数的指数都为1.(一次)3.两个一次方程组成.(方程组)二元一次方程组的解:二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。二元一次方程组的解只有一个,可以理解为两条直线相交点的坐标。二、解二元一次方程组代入消元法:将其中的一个方

26、程中的某个未知数用含有另一个未知数的代数式表现出来,再代入另一个方程,从而消去一个未知数,化二元一次方程组为一元一次方程。这种解方程组的方法称为代入消元法,简称代入法。思路:“消元”,即把“二元”变为“一元”。例: 用代入法解方程组 xy=3 3x8y=14 解:由得,y=x3 把代入得 3x8(x3)=14 ,解这个方程得:x=2y=1x=2把x=2代入得:y=1所以这个方程组的解为: 加减消元法: 两个二元一次方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法.基本思路: 加减消元: 二元一元主要

27、步骤:变形同一个未知数的系数相同或互为相反数加减消去一个元求解分别求出两个未知数的值写解写出方程组的解三、实际问题与二元一次方程组例题:探究2(p99) 综合运用6(p102)分析:题中的量很多,并且相互关联,这时,我们可画一张示意图,把题中的条件在图中标出来,这样比较直,能帮助我们比较顺利地找出题中的相等关系。四、三元一次方程组的解法三元一次方程:方程组含有三个未知数,每个方程中含有未知数的项的次数都是1,并且一共有三个方程,像这样的方程组叫三元一次方程组。解三元一次方程组的基本思路:通过“代入”或“加减”进行消元,把“三元”化为“二元”,使三元一次方程组转化为二元一次方程组,进而再转化为一

28、元一次方程。例:解下面两个三元一次方程组:第九章 不等式与不等式组一、不等式及其解集不等式:用不等号表示不相等关系的式子叫做不等式不等号包括: 、 、3),即用最简形式的不等式(如xa或x,b, 那么 a+cb+c 或 a-cb-c 即:不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质2:如果ab,c0,那么acbc (或 ) 即:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。性质3:如果ab,c0,那么ac5,则m _-5.2.如果x/y0, 那么xy _0.3.如果a-1,那么a-b _-1-b.4.-0.9-0.3,两边都除以(-0.3),得_.例已知a

29、0 ,试比较2a与a的大小。解法一:21,a0,2aa(不等式的基本性质3)解法二:在数轴上分别表示2a和a的点(a0),如图.2a位于a的左边,所以2aa 2a-a=a, 又 a0, 2a-a0,2aa(不等式的基本性质2)三、一元一次不等式一元一次不等式:含有一个未知数,未知数的次数是1的不等式,叫做一元一次不等式。例题:例1(p122) 综合运用6(p126)四、一元一次方程组一元一次方程组:一般地,由几个同一未知数的一元一次不等式所组成的一组不等式,叫做一元一次不等式组.一元一次不等式组的解集:一般地,几个一元一次不等式的解集的公共部分,叫做由它们所组成的一元一次不等式组的解集(不等式

30、组的解)有公共部分不等式组的解集无公共部分不等式组无解解不等式组:求不等式组的解集的过程,叫做解不等式组。规律:1. 两大取大;2.两小取小;3.大小小大中间找;4.大大小小解不了。例题:复习巩固2(p130)要求:解不等式组并在数轴上表示出不等式组的解集。第十章 数据的收集、整理与描述一、统计调查统计表和统计图的区别:统计表反映的数据准确且容易查找;统计图很直观地表示出变化的情况,但往往不能看出准确数据。 在实际问题中常把统计表、统计图结合起来描述数据,要能根据不同问题选择适当的统计图描述数据,以利于数据的分析,最终做出合理的决策。全面调查:考察全体对象的调查叫做全面调查。全面调查的步骤:1

31、、明确调查问 2、确定调查对象 3、选择调查方法4、展开调查,收集数据 5、整理数据 6、描述数据 7、得出结论抽样调查: 采用调查部分对象的方式来收集数据, 根据部分来估计整体的情况, 叫做抽样调查.总体: 所要考察对象的全体叫做总体.个体: 总体中每一个考察对象叫做个体。样本: 从总体中所抽取的一部分个体叫做总体的一个样本.样本容量: 样本中个体的数目。例:要调查下面几个问题,你认为应该作全面调查还是抽样调查?(1)检测某城市的空气质量(2)调查一个村子所有家庭的收入(3)调查一批重型导弹的杀伤半径全面调查与抽样调查的比较二、直方图 组距:把所有数据分成若干组,每个小组的两个端点之间的距离

32、(组内数据的取值范围)称为组距。组数:组数=(最大值最小值)/组距频数:对落在各小组内的数据进行累计,得到各小组内的数据的个数,叫做频数。画一组数据的频率分布直方图,可以按以下的步骤进行:(1)求极差,即数据中最大值与最小值的差.(2)决定组距与组数 :组距=极差/组数.(3)分组,通常对组内数值所在区间,取左闭右开区间 , 最后一组取闭区间.(4)登记频数,计算频率,列出频率分布表.(5)画出频率分布直方图.(纵轴表示频率组距)作频率分布直方图的方法:(1)把横轴分成若干段,每一线段对应一个组的组距;(2)然后以此线段为底作一矩形,它的高等于该组的频率/组距; 这样得出一系列的矩形,每个矩形

33、的面积恰好是该组上的频率,这些矩形就构成了频率分布直方图 新人教版八年级上册数学 知识点总结归纳45第十一章三角形第十二章 全等三角形第十三章 轴对称第十四章 整式乘法和因式分解第十五章 分式 第十一章 三角形 1、三角形的概念由不在同意直线上的三条线段首尾顺次相接所组成的图形叫做三角形。组成三角形的线段叫做三角形的边;相邻两边的公共端点叫做三角形的顶点;相邻两边所组成的角叫做三角形的内角,简称三角形的角。2、三角形中的主要线段(1)三角形的一个角的平分线与这个角的对边相交,这个角的顶点和交点间的线段叫做三角形的角平分线。(2)在三角形中,连接一个顶点和它对边的中点的线段叫做三角形的中线。(3

34、)从三角形一个顶点向它的对边做垂线,顶点和垂足之间的线段叫做三角形的高线(简称三角形的高)。3、三角形的稳定性三角形的形状是固定的,三角形的这个性质叫做三角形的稳定性。三角形的这个性质在生产生活中应用很广,需要稳定的东西一般都制成三角形的形状。4、三角形的特性与表示三角形有下面三个特性:(1)三角形有三条线段(2)三条线段不在同一直线上 三角形是封闭图形(3)首尾顺次相接三角形用符号“”表示,顶点是A、B、C的三角形记作“ABC”,读作“三角形ABC”。5、三角形的分类三角形按边的关系分类如下: 不等边三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等边三角形三角形按角的关系分类如下: 直

35、角三角形(有一个角为直角的三角形)三角形 锐角三角形(三个角都是锐角的三角形) 斜三角形 钝角三角形(有一个角为钝角的三角形)把边和角联系在一起,我们又有一种特殊的三角形:等腰直角三角形。它是两条直角边相等的直角三角形。6、三角形的三边关系定理及推论(1)三角形三边关系定理:三角形的两边之和大于第三边。推论:三角形的两边之差小于第三边。(2)三角形三边关系定理及推论的作用:判断三条已知线段能否组成三角形当已知两边时,可确定第三边的范围。证明线段不等关系。7、三角形的内角和定理及推论三角形的内角和定理:三角形三个内角和等于180。推论:直角三角形的两个锐角互余。三角形的一个外角等于和它不相邻的来

36、两个内角的和。三角形的一个外角大于任何一个和它不相邻的内角。注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。8、三角形的面积=底高多边形知识要点梳理 定义:由三条或三条以上的线段首位顺次连接所组成的封闭图形叫做多边形。 凸多边形 多边形 分类1: 凹多边形正多边形:各边相等,各角也相等的多边形分类2: 叫做正多边形。 非正多边形:1、n边形的内角和等于180(n-2)。 多边形的定理 2、任意凸形多边形的外角和等于360。 3、n边形的对角线条数等于1/2n(n-3) 只用一种正多边形:3、4、6/。 镶嵌拼成360度的角 只用一种非正多边形(全等):3、4。知识点一:多

37、边形及有关概念1、 多边形的定义:在平面内,由一些线段首尾顺次相接组成的图形叫做多边形. (1)多边形的一些要素: 边:组成多边形的各条线段叫做多边形的边 顶点:每相邻两条边的公共端点叫做多边形的顶点 内角:多边形相邻两边组成的角叫多边形的内角,一个n边形有n个内角。 外角:多边形的边与它的邻边的延长线组成的角叫做多边形的外角。(2)在定义中应注意: 一些线段(多边形的边数是大于等于3的正整数); 首尾顺次相连,二者缺一不可; 理解时要特别注意“在同一平面内”这个条件,其目的是为了排除几个点不共面的情况,即空间多边形. 2、多边形的分类:(1)多边形可分为凸多边形和凹多边形,画出多边形的任何一

38、条边所在的直线,如果整个多边形都在这条直线的同一侧,则此多边形为凸多边形,反之为凹多边形(见图1).本章所讲的多边形都是指凸多边形. 凸多边形 凹多边形图1(2)多边形通常还以边数命名,多边形有n条边就叫做n边形三角形、四边形都属于多边形,其中三角形是边数最少的多边形知识点二:正多边形各个角都相等、各个边都相等的多边形叫做正多边形。如正三角形、正方形、正五边形等。 正三角形 正方形 正五边形 正六边形 正十二边形要点诠释:各角相等、各边也相等是正多边形的必备条件,二者缺一不可. 如四条边都相等的四边形不一定是正方形,四个角都相等的四边形也不一定是正方形,只有满足四边都相等且四个角也都相等的四边

39、形才是正方形知识点三:多边形的对角线多边形的对角线:连接多边形不相邻的两个顶点的线段,叫做多边形的对角线. 如图2,BD为四边形ABCD的一条对角线。要点诠释:(1)从n边形一个顶点可以引(n3)条对角线,将多边形分成(n2)个三角形。(2)n边形共有条对角线。证明:过一个顶点有n3条对角线(n3的正整数),又共有n个顶点,共有n(n-3)条对角线,但过两个不相邻顶点的对角线重复了一次,凸n边形,共有条对角线。知识点四:多边形的内角和公式1.公式:边形的内角和为.2.公式的证明:证法1:在边形内任取一点,并把这点与各个顶点连接起来,共构成个三角形,这个三角形的内角和为,再减去一个周角,即得到边

40、形的内角和为.证法2:从边形一个顶点作对角线,可以作条对角线,并且边形被分成个三角形,这个三角形内角和恰好是边形的内角和,等于.证法3:在边形的一边上取一点与各个顶点相连,得个三角形,边形内角和等于这个三角形的内角和减去所取的一点处的一个平角的度数,即.要点诠释:(1)注意:以上各推导方法体现出将多边形问题转化为三角形问题来解决的基础思想。(2)内角和定理的应用: 已知多边形的边数,求其内角和; 已知多边形内角和,求其边数。 知识点五:多边形的外角和公式1.公式:多边形的外角和等于360. 2.多边形外角和公式的证明:多边形的每个内角和与它相邻的外角都是邻补角,所以边形的内角和加外角和为,外角和等于.注意:n边形的外角和恒等于360,它与边数的多少无关。要点诠释:(1)外角和

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 初中资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁