三角形三条高线交于一点的证明?.doc

上传人:豆**** 文档编号:33517763 上传时间:2022-08-11 格式:DOC 页数:4 大小:54.50KB
返回 下载 相关 举报
三角形三条高线交于一点的证明?.doc_第1页
第1页 / 共4页
三角形三条高线交于一点的证明?.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述

《三角形三条高线交于一点的证明?.doc》由会员分享,可在线阅读,更多相关《三角形三条高线交于一点的证明?.doc(4页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、三角形三条高线交于一点的证明?证法一:运用同一法证三条高两两相交的交点是同一点。已知:ABC的两条高BE、CF相交于点O,第三条高AD交高BD于点Q,交高CF于点P。求证:P、Q、O三点重合证明:如图,BEAC,CFABAEB = AFC = 90又BAE = CAFABE ACF,即ABAF = ACAE又ADBCAEQ ADC,AFP ADB,即ACAE = ADAQ,ABAF = ADAPABAF = ACAE,ACAE = ADAQ,ABAF = ADAPADAQ = ADAPAQ = AP点Q、P都在线段AD上点Q、P重合AD与BE、AD与CF交于同一点两条不平行的直线只有一个交点B

2、E与CF也交于此点点Q、P、O重合。证法二:连结一顶点和两高交点的线垂直于第三边,用四点共圆性质。已知:ABC的两条高AD、BE相交于点O,第三条高CF交高AB于点F,连结CO交AB于点F。求证:CFAB。证明:ADBC于E,BEAC于EA、B、D、E四点共圆1ABE同理212ABEABE+BAC90,2+BAC90即CFAB。注:证法一和证法二是证明共点线的常用方法。证法三:证两条高的交点在第三条高线上,建立直角坐标系运用代数方法证明。证明:如图6,以直线BC为x轴,高AD为y轴,建立直角坐标系,设A(0 , a) , B(b , 0) , C(c , 0),由两条直线垂直的条件xCDOyA

3、BFE则三条高的直线方程分别为:解(2)和(3)得 这说明BE和CF得交点在AD上,所以三角形的三条高相交于一点。注:有时候考虑直角坐标系这一有力的数形结合工具可以有效地解决问题。证法四:转化为证明另一个三角形的三条中垂线(或中线)交于一点。已知:AD、BE、CF是ABC的三条高。求证:AD、BE、CF相交于一点。证明:过点A、B、C分别作BC、AC、AB的平行线ML、MN、NL AMBC,MBAC 四边形AMBC是平行四边形 AMBC 同理,ALBC AMAL ADMLAD是ML的垂直平分线同理,BE、CF分别是MN、NL的垂直平分线而三角形的三条垂直平分线相交于一点 AD、BE、CF相交于

4、一点。注:三角形的三条中线(可中垂线、角平分线)相交于一点,这事实学生容易理解,也不难证明,把证明三角形的三条垂线相交于一点的问题转化为另一三角形的三条中线(中垂线)相交于一点,这种化陌生为熟悉、化难为易的转化方法必须让学生理解掌握。证法五:运用锡瓦(Ceva)定理证明。已知:AD、BE、CF是ABC的三条高。求证:AD、BE、CF相交于一点。证明:如图,ADBC于E,BEAC于E ABD CBF (1)同理,由ADC BEC得 , (2)由AFC AEB (3)三式相乘得 即AD、BE、CF相交于一点。注:锡瓦定理是证明共点线的有力工具,虽然中学不作要求,但对于学有余力的学生不妨引导他们自己研究,激发他们的学习兴趣。锡瓦定理可以用梅涅劳(Menelaus)定理证明,而梅涅劳定理可以由平行线分线段成比例定理轻松得到。在适当情况下适当的启发有利于学生思维的扩散,有利于培养学生的创新能力。

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 教育专区 > 高考资料

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁