难点解析北师大版八年级数学下册第五章分式与分式方程重点解析练习题(名师精选).docx

上传人:可****阿 文档编号:32656677 上传时间:2022-08-09 格式:DOCX 页数:18 大小:375.37KB
返回 下载 相关 举报
难点解析北师大版八年级数学下册第五章分式与分式方程重点解析练习题(名师精选).docx_第1页
第1页 / 共18页
难点解析北师大版八年级数学下册第五章分式与分式方程重点解析练习题(名师精选).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《难点解析北师大版八年级数学下册第五章分式与分式方程重点解析练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《难点解析北师大版八年级数学下册第五章分式与分式方程重点解析练习题(名师精选).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某生产厂家更新技术后,平均每天比更新技术前多生产3万件产品,现在生产50万件产品与更新技术前生产40万件产

2、品所需时间相同,设更新技术前每天生产产品x万件,则可以列方程为()ABCD2、如果把分式中的和都扩大2倍,那么分式的值( )A扩大2倍B不变C缩小2倍D缩小4倍3、一辆汽车开往距离出发地180千米的目的地,出发后第一小时内按原计划的速度匀速行驶,一小时后以原来的1.5倍匀速行驶,并比原计划提前40分钟到达目的地求前一小时的行驶速度设前一小时的行驶速度为,则可列方程( )ABCD4、已知ab5,ab3,则( )A2BC4D5、把写成科学记数法的形式,正确的是( )ABCD6、下列是最简分式的是( )ABCD7、若分式有意义,则x的取值范围是( )ABCD8、下列各分式中,当x1时,分式有意义的是

3、()ABCD9、小明上网查得新冠肺炎病毒的直径大约是106纳米,已知1纳米=0.000001毫米,试用科学记数法表示106纳米,下列正确的是( )A10.6107米B1.0610-7米C10.6106米D1.06106米10、化简的结果是()AmBmCm+1Dm1第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、将数用科学记数法表示为_2、计算:_3、计算:_4、已知,令,即当n为大于1的奇数时,:当n为大于1的偶数时,则_(用含a的代数式表示),的值为_5、已知,则_三、解答题(5小题,每小题10分,共计50分)1、解方程:2、阅读下列材料:根据你观察到的规律,解决下列

4、问题:(1)写出组中的第5个等式;(2)写出组的第n个等式,并证明;(3)计算:3、根据材料完成问题:在含有两个字母的式子中,任意交换两个字母的位置,式子的值始终保持不变,像这样的式子我们称之为对称式,如:,请解决下列问题: ; 这3个式子中只有1个属于对称式: (请填序号);(2)已知若,求对称式的值;若,当0时,求的取值范围4、列方程解应用题某工程队承担了750米长的道路改造任务,工程队在施工完210米道路后,引进了新设备,每天的工作效率比原来提高了20,结果共用22天完成了任务求引进新设备前工程队每天改造道路多少米?5、在分式中,若M,N为整式,分母M的次数为a,分子N的次数为b(当N为

5、常数时,),则称分式为次分式例如,为三次分式(1)请写出一个只含有字母的二次分式_;(2)已知,(其中m,n为常数)若,则,中,化简后是二次分式的为_;若A与B的和化简后是一次分式,且分母的次数为1,求的值-参考答案-一、单选题1、A【分析】更新技术前每天生产产品x万件,可得更新技术后每天生产产品(x+3)万件根据现在生产50万件产品与更新技术前生产40万件产品所需时间相同列出方程即可【详解】解:更新技术前每天生产产品x万件,更新技术后每天生产产品(x+3)万件依题意得故选:A【点睛】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列出方程是解题关键2、C【分析】根

6、据分式的性质求解即可【详解】解:把分式中的和都扩大2倍,得:,分式的值缩小2倍故选:C【点睛】此题考查了分式的基本性质,解题的关键是熟练掌握分式的基本性质分式的基本性质:分式的分子和分母乘(或除以)同一个不等于0的整式,分式值不变3、C【分析】根据原计划的时间实际所用时间提前的时间可以列出相应的分式方程【详解】解:设前一小时的行驶速度为,由题意可得:,即,故选:C【点睛】本题主要是考查了列分式方程,熟练地根据题意找到等量关系,通过等量关系列出对应的分式方程,这是解题的关键4、B【分析】根据异分母的加减进行计算,进而根据完全平方公式的变形,再将已知式子的值整体代入求解即可【详解】解: ab5,a

7、b3,原式故选B【点睛】本题考查了分式的化简求值,整体代入是解题的关键5、A【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0813=故选A【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定6、C【详解】解:A、,不是最简分式,此项不符题意;B、,不是最简分式,此项不符题意;C、是最简分式,此项符合题意;D、,不是最简分式,此项不符题意;故选:C【点睛】本题考查

8、了最简分式,熟记最简分式的定义(分子与分母没有公因式的分式,叫做最简分式)是解题关键7、D【分析】根据分式有意义的条件是分母不为0列不等式求解【详解】解:分式有意义,解得:,故选D【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键8、A【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可【详解】解:A、当x1时,分母2x+110,所以分式有意义;故本选项符合题意;B、当x1时,分母x+10,所以分式无意义;故本选项不符合题意;C、当x1时,分母x210,所以分式无意义;故本选项不符合题意;D、当x1时,分母x2+x0,所以分式无意义;故本选项不符合题意;故选A【点睛

9、】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键9、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值大于10时,n是正整数;当原数的绝对值小于1时,n是负整数【详解】解:1纳米=0.000001毫米=0.000000001米,106纳米=0.000000106米=1.06107米故选:B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值10、C【分析】把除法转化为乘法,然

10、后约分即可求出答案【详解】解:原式m+1,故选:C【点睛】本题考查了分式的除法运算,两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘,再按乘法法则计算即可二、填空题1、【分析】科学记数法的表现形式为的形式,其中,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同,当原数绝对值大于等于10时,n是正数,当原数绝对值小于1时n是负数;由此进行求解即可得到答案【详解】解:由题意得:数用科学记数法表示为;故答案为【点睛】本题主要考查科学记数法,熟练掌握科学记数法是解题的关键2、2【分析】根据分式的运算法则即可求解【详解】故答案为:2【点睛】此题主要

11、考查分式的运算,解题的关键是熟知其运算法则3、2x【分析】直接利用分式的性质化简得出答案【详解】解:2x故答案为:2x【点睛】本题主要考查了约分,正确掌握分式的性质化简是解题关键4、a 1011 【分析】先分别计算再归纳总结规律, 这一列数6个数循环,从而可得第一空的答案,再计算从而可得第二空的答案.【详解】解: 总结可得: 这一列数6个数循环,而 =-3337=-1011, 故答案为:【点睛】本题考查的是数的规律探究,同时考查分式的运算,掌握“从具体到一般的探究方法再总结规律并运用规律解决问题”是解本题的关键.5、#【分析】首先将通分为,然后将代入求解即可【详解】解:,将代入,原式故答案为:

12、【点睛】此题考查了分式的通分运算,代数式求值问题,完全平方公式的变形,解题的关键是将利用分式的性质和完全平方公式进行通分三、解答题1、【分析】方程两边同时乘以去掉分母,把分式方程化为整式方程,求出方程的解并检验后即得结果【详解】解:,检验:当时, 是原方程的解 原方程的解是【点睛】本题考查了分式方程的解法,属于基础题目,熟练掌握求解的方法是解题的关键2、(1);(2),证明见解析;(3)【分析】(1)根据前几个等式的变化规律即可求解;(2)根据前几个等式的变化规律即可得出第n个等式,根据异分母分式的减法法则证明即可;(3)根据前三组观察出的变化规律求解即可(1)解:,第5个等式为;(2)解:,

13、第n个等式为,证明:右边=,左边=,右边=左边,;(3)解:=,=,=,=【点睛】本题考查分式规律性问题,涉及用代数式表示数的规律、异分母分式的减法、与实数运算有关的规律题,理解题意,正确得出变化规律,会利用类比的思想方法解决问题是解答的关键3、(1);(2)5;k【分析】(1)根据对称式的定义进行判断;(2)根据已知m=a+b,n=ab,整体代入即可求解;将对称式化简后整理后,解不等式即可求解;【详解】解:(1)a2-b2b2-a2;a2b2=b2a2;当a0时,由定义知属于对称式的是,故答案为:;(2)(x-a)(x-b)=x2-(a+b)x+ab=x2+mx+n,m=-(a+b),n=a

14、b,a2+b2=(a+b)2-2ab=m2-2n,当m=1,n=-2时,a2+b2=12-2(-2)=5;,当m=-3,n=1时,a+b=3,ab=1,解得:k【点睛】本题考查了分式的化简求值,完全平方公式,解一元一次不等式,新定义等知识,解决本题的关键是理解阅读材料,掌握分式计算法则及完全平方公式4、30米【分析】设引进新设备前工程队每天建造道路米,则引进新设备后工程队每天改造米,利用工作时间工作总量工作效率,结合共用22天完成了任务,即可得出关于的分式方程,解之经检验后即可得出结论【详解】解:设引进新设备前工程队每天建造道路米,则引进新设备后工程队每天改造米,依题意得:,解得:,经检验,是

15、所列方程的解,且符合题意答:引进新设备前工程队每天建造道路30米【点睛】本题考查了分式方程的应用,解题的关键是找准等量关系,正确列出分式方程5、(1)(不唯一);(2),;或【分析】(1)理解新定义,直接根据作答即可;(2)把,代入计算,化简后根据新定义进行判断即可;先求解 根据和为一次分式且分母的次数为1,可得分子是一次多项式,且含有或的因式,从而可列方程再解方程求解的值,于是可得答案.【详解】解:(1)根据定义可得:这个二次分式为:(不唯一)(2) , 化简后是二次分式; 所以不是二次分式; 所以不是二次分式; 所以是二次分式; , A与B的和化简后是一次分式,且分母的次数为1,且或且解得:或 或【点睛】本题考查的是分式的加减法,乘法以及乘方运算,新定义运算,理解新定义,按照新定义的规定进行判断是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁