《基础强化京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专题测评试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《基础强化京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专题测评试题(含答案及详细解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、昌平公园建成于1990年,公园内有一个占地10000平方米的静明湖,另外建有弘文阁、碑亭、文节亭、诗田亭、逸
2、步桥、牌楼等园林景观及古建筑如图,分别以正东、正北方向为x轴、y轴建立平面直角坐标系,如果表示文节亭的点的坐标为(2,0),表示园中园的点的坐标为(-1,2),则表示弘文阁所在的点的坐标为( )A(2,3)B(2,2)C(3,3)D(3,4)2、三车魏景元四年(公元263年),由我国古典数学理论的奠基人之一刘徽完成了九章术注十卷,重差为第一卷,它是我国学者编撰的最早的一部测量数学著作,亦为地图学提供了数学基础,该卷中的第一个问题是求海岛上的山峰的高度,这本书的名称是( )A海岛算经B孙子算经C九章算术D五经算术3、小明有许多个可供贴用的数字,但只有个可供贴用的数字,他用这些数字将他的剪贴簿的各
3、页编号,最多他能编贴到哪一页?( )A41B99C112D1194、任意掷一枚骰子,下列情况出现的可能性比较大的是( )A面朝上的点数是6B面朝上的点数是偶数C面朝上的点数大于2D面朝上的点数小于25、一次水灾中,大约有20万人的生活受到影响,灾情持续一天,就需粮食可能为()A50万千克B40万千克C20万千克D10万千克6、某校在疫情复学后建立了一个身份识别系统,利用如图的二维码可以进行身份识别,图是某个学生的识别图案,黑色小正方形表示白色小正方形表示,将第一行小正方形表示的数字从左到右依次记为那么可以转换为该生所在班级序号,其序号为如图第一行小正方形表示的数字从左到右依次为,序号为表示该生
4、为班学生表示班学生的识别图案是( )ABCD7、小明是七年级的一名学生,他的身高可能是( )A165mmB165cmC165dmD165m8、我区面积3424平方公里(1公里=1千米),请你估计,它的百万分之一大约相当于()A一间教室的面积B一块操场的面积C一张黑板的面积D一张课桌的面积9、某款国产手机上有科学计算器,依次按键:,显示的结果在哪两个相邻整数之间()A23B34C45D5610、某校数学兴趣小组为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8
5、.5米D9米第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、(问题提出):将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?(问题探究):要研究上面的问题,我们不妨先从特例入手,进而找到一般规律探究一:将一个边长为2的菱形的四条边分别2等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图1,从上往下,共有2行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为12的平行四边形,共有213个;(2)第二行有斜边长为1,底长为12的平行四边形,共
6、有213个;为了便于归纳分析,我们把平行四边形下面的底在第二行的所有平行四边形均算作第二行的平行四边形,以下各行类同第二行因此底第二行还包括斜边长为2,底长为12的平行四边形,共有213个即:第二行平行四边形共有23个所以如图1,平行四边形共有2339(21)2我们再研究菱形的个数:分析:边长为1的菱形共有22个,边长为2的菱形共有12个,所以:如图1,菱形共有22125235个探究二:将一个边长为3的菱形的四条边分别3等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图2,从上往下,共有3行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长
7、为13的平行四边形,共有3216个;(2)第二行有斜边长为1,底长为12的平行四边形,共有3216个;底在第二行还包括斜边长为2,底长为13的平行四边形,共有3216个,即:第二行平行四边形共有26个(3)第三行有斜边长为1,底长为13的平行四边形,共有3216个;底在第三行还包括斜边长为2,底长为13的平行四边形,共有3216个底在第三行还包括斜边长为3,底长为13的平行四边形,共有3216个,即:第三行平行四边形共有36个所以如图2,平行四边形共有36266(321)6(321)2我们再研究菱形的个数:分析:边长为1的菱形共有32个,边长为2的菱形共有22个,边长为3的菱形共有12个所以:
8、如图2,菱形共有32221214347个探究三:将一个边长为4的菱形的四条边分别4等分,连接各边对应的等分点,则该菱形被剖分的网格中的平行四边形的个数和菱形个数分别是多少?如图3,从上往下,共有4行,我们先研究平行四边形的个数:(1)第一行有斜边长为1,底长为14的平行四边形,共有432110个;(2)第二行有斜边长为1,底长为14的平行四边形,共有432110个;底在第二行还包括斜边长为2,底长为14的平行四边形,共有432110个,即:第二行平行四边形共有210个(3)模仿上面的探究,第三行平行四边形总共有 个(4)按照上边的规律,第四行平行四边形总共有 个所以,如图3,平行四边形总共有
9、个我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个所以:如图3,菱形共有42322212 个,(仿照前面的探究,写成三个整数相乘的形式)(问题解决)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是 和菱形个数分别是 (用含n的代数式表示)(问题应用)将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,若得出该菱形被剖分的网格中的平行四边形的个数是441个,则n (拓展延伸)将一个边长为n(n2)的菱形的四条边n等分,连接各
10、边对应的等分点,当该菱形被剖分的网格中的平行四边形的个数与菱形个数之比是13519时,则n 2、5个人围成一个圆圈做的游戏,游戏规则是:每个人心里都想好一个有理数,并把自己想好的数如实告诉相邻的两个人,然后,每个人将他相邻的两个人告诉他的数的平均数报上来,若报出来的数,如图所示,则报2的人心里想的数是_3、在实数范围内因式分解因式_4、设函数的图象关于(1,0)中心对称,则_5、将非零自然数按照下图中规律排列,有些数会多次出现,有些数永远不会出现请问88在图中共出现了_次,永远不会出现的数中最小的自然数是_12349798992345989910045671011021037891010310
11、410511121314107108109三、解答题(5小题,每小题10分,共计50分)1、概念学习规定:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222,(3)(3)(3)(3)等类比有理数的乘方,我们把222记作2,读作“2的圈3次方”,(3)(3)(3)(3)记作(3),读作“3的圈4次方”,一般地,把(a0)记作a,读作“a的圈n次方”初步探究(1)直接写出计算结果:2=_,=_;(2)关于除方,下列说法错误的是_A任何非零数的圈2次方都等于1; B对于任何正整数n,1=1; C3=4 D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数深入思考:我们知道,有理数的减
12、法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果直接写成幂的形式(3)=_;5=_;=_(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于_;(3)算一算:2、在一平直河岸l同侧有A,B两个村庄,A,B到l的距离分别是3km和2km,ABakm(a1)现计划在河岸l上建一抽水站P,用输水管向两个村庄供水方案设计某班数学兴趣小组设计了两种铺设管道方案:图1是方案一的示意图,设该方案中管道长度为d1,且d1PB+BA(km)(其中BPl于点P);图2是方案二的示意图,设该方案中管道长度为d2,且d2PA
13、+PB(km)(其中点A与点A关于l对称,AB与l交于点P)观察计算(1)在方案一中,d1 km(用含a的式子表示)(2)在方案二中,组长小宇为了计算d2的长,作了如图3所示的辅助线,请你按小宇同学的思路计算,d2 km(用含a的式子表示)探索归纳(1)当a4时,比较大小:d1 d2(填“”、“”或“”);当a6时,比较大小:d1 d2(填“”、“”或“”);(2)请你参考方框中的方法指导,就a(当a1时)的所有取值情况进行分析,要使铺设的管道长度较短,应选择方案一还是方案二?3、(1)在遇到问题:“钟面上,如果把时针与分针看作是同一平面内的两条线段,在200215之间,时针与分针重合的时刻是
14、多少?”时,小明尝试运用建立函数关系的方法:恰当选取变量x和y小明设2点钟之后经过x min(0x15),时针、分针分别与竖轴线(即经过表示“12”和“6”的点的直线,如图1)所成的角的度数为y1、y2;确定函数关系由于时针、分针在单位时间内转动的角度不变,因此既可以直接写出y1、y2关于x的函数关系式,也可以画出它们的图象小明选择了后者,画出了图2;根据题目的要求,利用函数求解本题中小明认为求出两个图象交点的横坐标就可以解决问题请你按照小明的思路解决这个问题(2)请运用建立函数关系的方法解决问题:钟面上,如果把时针与分针看作是同一平面内的两条线段,在730800之间,时针与分针互相垂直的时刻
15、是多少?4、试求出所有正整数使得关于x的二次方程至少有一个整数根5、如图,某公路隧道横截面为抛物线,其最大高度为 6 米,底部宽度OM 为 12 米现以 O 点为原点,OM 所在直线为 x 轴建立直角坐标系(1)直接写出点 M 及抛物线顶点 P 的坐标;(2)求这条抛物线的解析式;(3)若要搭建一个矩形“支撑架”ADDCCB,使 C 、D 点在抛物线上,A、B 点在地面 OM 上,则这个“支撑架”总长的最大值是多少?-参考答案-一、单选题1、B【分析】直接利用文节亭的点的坐标为(2,0),进而得出原点位置进而得出答案【详解】如图所示:弘文阁所在的点的坐标为:(-2,-2)故选:B【点睛】此题主
16、要考查了坐标确定位置,正确得出原点位置是解题关键2、A【详解】九章算术注十卷,重差为第一卷,它是我国学者编撰的最早的一部测量数学著作,亦为地图学提供了数学基础,该卷中的第一个问题是求海岛上的山峰的高度,这本书的名称是海岛算经故选A3、A【解析】【分析】首先确定14个2从小到大构成的数即可求解【详解】由于只有13个可供贴用的数字2,于是含数字2的数有以下13个:2,12,20,21,22,23,24,25,26,27,28,29,32由于小明有许多个可供贴用的数字0,1,3,4,5,6,7,8,9,所以还可继续编贴到33,34,35,36,37,38,39,40,41所以最多他能编贴到41页故选
17、A【点睛】本题是一道探索性实际问题,考查了同学们探索发现和应用数学知识解决实际问题的能力,有利于培养发展思维能力关键是得到第14个2所在的具体数4、C【分析】根据题意与概率的计算公式,比较四个选项中包含的情况数目,比较可得答案【详解】解:A面朝上的点数为6点的情况为1种;B面朝上的点数是偶数的情况为3种;C面朝上的点数大于2的情况为4种;D面朝上的点数小于2的情况为1种,比较可得:C包含的情况数目最多,故其概率最大;故选C【点睛】可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相等,那么它们的可能性就相等5、D【分析】答题时首先知道一个人一天需
18、要粮食多少,然后估算20万人需多少粮食【详解】人一天需要0.5kg粮食,故有20万人的生活受到影响,灾情持续一天,就需粮食可能为10万kg故选D【点睛】本题主要考查数学常识的知识点,知道生活中的数学常识是解答本题的关键6、B【分析】仿照二维码转换的方法求出所求即可【详解】解:A、12302212102010,故本选项错误;B、0231221210206,故本选项正确;C、0231221211207,故本选项错误;D、0230221211203,故本选项错误;故选:B【点睛】此题考查了用数字表示事件,弄清题中的转换方法是解本题的关键7、B【解析】【分析】根据生活实际以及长度的度量进行判断即可.【
19、详解】A、165mm,人的身高不可能这么矮,故A 不符合实际; B、165cm,符合实际;C、165dm就是16.5m,人的身高不可能这么高,故C不符合实际;D、165m,人的身高不可能这么高,故D不符合实际,故选B.【点睛】本题考查了对于生活中数据的估测,应从实际的角度出发进行判断,也可从自己的角度出发判断,对日常生活中的一些相关数据有所了解是解题的关键.8、B【分析】首先算出3424平方公里的百万分之一大约是多少,然后与选择项比较即可【详解】3424平方公里=3424平方千米=3424000000平方米,3424000000=3424平方米,应是一块操场的面积故选B【点睛】解决本题的关键是
20、把我区面积进行合理换算,得到相应的常见的值9、B【分析】用计算器计算得3.464101615得出答案【详解】解:使用计算器计算得,4sin603.464101615,故选:B【点睛】本题考查计算器的使用,正确地操作和计算是得出正确答案的前提10、D【解析】试题分析:在同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为:9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当
21、的数学模型来解决问题二、填空题1、探究三:(3)3(4321);(4)4(4321),(4321)2,459个;【问题解决】(nn1n21)2,n(n1)(2n1);【问题应用】6;【拓展延伸】9【分析】探究三:通过第一行,第二行,可推出第三行的规律为 3(4321)个,进而推出第四行的规律为 4(4321)个,再通过边长为4求出总个数即可;问题解决:根据边长为4的规律,归纳边长为n的情形得到平行四边形的总个数(nn1n21)2,菱形的个数为n(n1)(2n1)即可;问题应用:根据平行四边形个数构造方程,解方程即可;拓展延伸:根据规律利用平行四边形的个数与菱形个数的比构造方程,化简整理,解方程
22、即可得到其他答案【详解】解:探究三:(3)通过第一行,第二行,可推出第三行平行四边形总共有 3(4321)个故答案为:3(4321);(4)按照以上规律,第四行平行四边形共有 4(4321)个,所以,如图 3,平行四边形共有 4(4321)3(4321)2(4321)1(4321)(4321)(4321)(4321)2个我们再研究菱形的个数:分析:边长为1的菱形共有42个,边长为2的菱形共有32个,边长为3的菱形共有22个,边长为4的菱形共有12个所以:如图3,菱形共有42322212(459)个,(仿照前面的探究,写成三个整数相乘的形式)故答案为:4(4321),(4321)2,459;问题
23、解决:将一个边长为n(n2)的菱形的四条边n等分,连接各边对应的等分点,根据上边的规律,得出该菱形被剖分的网格中的平行四边形的个数是(nn1n21)2和菱形个数分别是n(n1)(2n1)个(用含n的代数式表示)故答案为:(nn1n21)2,n(n1)(2n1);问题应用:根据题意可得,(nn1n21)2441,nn1n2121,n6故答案为:6;拓展延伸:Sn(n1)(n2)1, S123n,得 2Sn(n1),S,根据题意可得,整理得:,解得:n9,或者n(舍去),故n的值为9故答案为:9【点睛】本题考查是找规律的试题,通过探究,问题解决,应用,拓展使问题逐步加深,培养学生分析问题,研究问题
24、,解决问题,应用拓展能力,仔细观察图形,通过不完全归纳法,得出规律,利用规律构造方程,解一元二次方程是解题关键2、-3【分析】假设报2的人心里想的数是x,由于3是报4的人和报2的人心里想的数的平均数,则报4的人心里想的是6-x,报1的人心里想的是4+x,以此类推报3的人心里想的数是-x,报5的人心里想的是8+x,列出方程即可求解.【详解】解:设报2的人心里想的数是x则报4的人:报1的人:报3的人: 报5的人:1是报5和报2的人心里想的数的平均数解的故答案为:-3【点睛】本题主要考查的是阅读理解和探索规律题,其中考查的知识点有平均数的相关计算以及一元一次方程的应用,掌握以上知识点是解题的关键.3
25、、【分析】先运用平方差公式,分解成(x2+2)(x2-2),再把x2-2写成x2-()2,符合平方差公式的特点,可以继续分解【详解】解:=故答案为:.【点睛】本题考查了实数范围内分解因式,利用完全平方公式或平方差公式在实数范围内进行因式分解,分解要彻底,直到不能分解为止4、5【分析】根据y|xm|xn|的图象关于点(,0)对称,结合已知条件,可得a的值【详解】解:y|xm|xn|的图象关于点(,0)对称,又函数y|x3|xa|x(3)|xa|的图象关于点(1,0)中心对称,故1,解得a5,故答案为:5.【点睛】本题考查的知识点是绝对值函数的对称性,其中熟练掌握y|xm|xn|的图象关于点(,0
26、)对称,是解答的关键5、13 5050 【分析】先表示出每行的各数分别是,.,找到最后包含88的行,可得88出现了几次,再根据永远不会出现的数是处于两个相邻行之间的数,即在和之间的数,且为整数,从而计算可得【详解】解:显然各行上出现的数都由该行第一列的数决定,则可以先求出每行第一个数,记第一行第一个数依次为a1,a2,a3,.,观察可得:an=,第n行各数为,.,则第13行各数为79,80,81,.,包含88,第14行各数为92,93,94,.,不包含88,88在图中共出现了13次,永远不会出现的数是处于两个相邻行之间的数,即在和之间的数,且为整数,当n=99时,=4950,=4951,不符合
27、,当n=100时,=5049,=5051,则存在5050,处于第100行最后一个数和第101行第一个数之间,最小的永不出现的数为5050,故答案为:13,5050【点睛】本题考查了数字型规律,难度较大,解题的关键是找到每行各数的规律,并用代数式表示出各数三、解答题1、初步探究(1);8;(2)C;深入思考(1);28;(2);(3)原式=1 【解析】初步探究(1);8;(2)C;深入思考(1);28;(2);(3)原式=1 2、观察计算:(1)a+2;(2);探索归纳:(1),;(2)当a5时,选方案二;当a5时,选方案一或方案二;当1a5时,选方案一【分析】观察计算:(1)由题意可得PB2,
28、即可得d1的值为a+2;(2)由条件根据勾股定理可以求出KB的值,由轴对称可以求出AK的值,在RtKBA由勾股定理可以求出AB的值就是管道长度;探索归纳:(1)把a4代入d1a+2和d2就可以比较其大小;把a6代入d1a+2和d2就可以比较其大小;(2)类比题目中所给的方法,分类进行讨论求出a的范围,继而确定选择方案【详解】(1)由题意可得PB2,d1PB+BAa+2;故答案为a+2;(2)因为BK2a21,AB2BK2+AK2a21+52a2+24d2;故答案为;探索归纳:(1)当a4时,d16,d2 ,d1d2;当a6时,d18,d2,d1d2;故答案为,;(2)d12d22(a+2)2(
29、)24a20当4a200,即a5时,d12d220,d1d20,d1d2;当4a200,即a5时,d12d220,d1d20,d1d2当4a200,即a5时,d12d220,d1d20,d1d2综上可知:当a5时,选方案二;当a5时,选方案一或方案二;当1a5时,选方案一【点睛】本题考查了轴对称的性质的运用,最短路线问题数学模式的运用,勾股定理的运用,数的大小的比较方法的运用,综合考查了学生的作图能力,运用数学知识解决实际问题的能力,以及观察探究和分类讨论的数学思想方法3、(1)210(2)754【分析】(1)分别求出时针与分针的函数解析式,利用函数交点问题求出交点坐标即得出答案(2)利用(1
30、)中关系,得出时针与竖轴线夹角与转动时间的关系,求出即可【详解】(1)时针:y1=60+x分针:y2=6x 60+x=6x,解得x= 所以在2:002:15之间,时针与分针重合的时刻是2:10 (2)时针:y1=135+x分针:y2=6x 135+x=6x,解得x=,所以在7:308:00之间,时针与分针重合的时刻是7:54【点睛】本题主要考查一次函数的应用,找出时针与分针转动角度与x的函数关系是解决本题的关键4、1,3,6,10【分析】首先将原方程变形为(x+2)2a=2(x+6),进而分析x+2,以及a的取值,得出所有的可能结果【详解】解:将原方程变形为(x+2)2a=2(x+6)显然x+
31、20,于是a=,由于a是正整数,所以a1,即1所以x2+2x-80,(x+4)(x-2)0,所以-4x2(x-2)当x=-4,-3,-1,0,1,2时,得a的值为1,6,10,3,1a=1,3,6,10说明从解题过程中知,当a=1时,有两个整数根-4,2;当a=3,6,10时,方程只有一个整数根综上所述,当a=1,3,6,10时,关于x的一元二次方程ax2+2(2a-1)x+4(a-3)=0至少有一个整数根【点睛】此题主要考查了在关于x的一元二次方程中,如果参数是一次的,可以先对这个参数来求解,题目比较典型5、(1) M(12,0) ,P(6,6);(2);(3)当m=3时,AD+DC+CB有
32、最大值为15米.【分析】(1)根据所建坐标系易求M、P的坐标;(2)可设解析式为顶点式,把O点(或M点)坐标代入求待定系数求出解析式;(3)总长由三部分组成,根据它们之间的关系可设A点坐标为(m,0),用含m的式子表示三段的长,再求其和的表达式,运用函数性质求解【详解】(1)易知底部宽度为12米所以OM=12.则M(12,0),最大高度为6米,所以P(6,6).(2)设此函数关系式为:.函数经过点(0,0),即.此函数解析式为:.(3)设A(m,0),则B(12-m,0),C,D.“支撑架”总长AD+DC+CB =.此二次函数的图象开口向下.当m=3米时,AD+DC+CB有最大值为15米点评:本题难度在第(3)问,要分别求出三部分的表达式再求其和关键在根据图形特点选取一个合适的参数表示它们,得出关系式后运用函数性质来解