《基础强化京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专项攻克试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《基础强化京改版九年级数学下册第二十六章-综合运用数学知识解决实际问题专项攻克试题(含答案解析).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二十六章 综合运用数学知识解决实际问题专项攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、,则( )AB0C32D642、设m,n是正整数,满足,给出以下四个结论:m,n都不等于1;m,n都不等于2
2、:m,n都大于1;m,n至少有一个等于1其中正确的结论是( )ABCD3、如图A、B、C是固定在桌面上的三根立柱,其中A柱上穿有三个大小不同的圆片,下面的直径总比上面的大现想将这三个圆片移动到B柱上,要求每次只能移动一片(叫移动一次),被移动的圆片只能放入A、B、C三个柱之一且较大的圆片不能叠在小片的上面,那么完成这件事情至少要移动圆片的次数是()A6B7C8D94、我区面积3424平方公里(1公里=1千米),请你估计,它的百万分之一大约相当于()A一间教室的面积B一块操场的面积C一张黑板的面积D一张课桌的面积5、几何中研究物体时不研究它的( )A形状B大小C位置关系D颜色6、某校数学兴趣小组
3、为测量学校旗杆AC的高度,在点F处竖立一根长为1.5米的标杆DF,如图所示,量出DF的影子EF的长度为1米,再量出旗杆AC的影子BC的长度为6米,那么旗杆AC的高度为( )A6米B7米C8.5米D9米7、如图所示为两把按不同比例尺进行刻度的直尺,每把直尺的刻度都是均匀的,已知两把直尺在刻度10处是对齐的,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,则上面直尺的刻度16与下面直尺对应的刻度是( )A19.4B19.5C19.6D19.78、图书馆将某一本书和某一个关键词建立联系,规定:当关键词Ai出现在书Bj中时,元素aij1,否则aij0(i,j为正整数)例如:当关键词A1出现
4、在书B4中时,a141,否则a140根据上述规定,某读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,则下列相关表述错误的是()A当a21+a51+a613时,选择B1这本书B当a22+a52+a623时,不选择B2这本书C当a2j,a5j,a6j全是1时,选择Bj这本书D只有当a2j+a5j+a6j0时,才不能选择Bj这本书9、如图一是一个解环游戏,一条链子由14个铁圈连在一起,要使这14个铁圈环环都脱离,例如图二只需要解开一个圈即可环环都脱离要解开图一的链子至少要解开几个圈呢?()A5个B6个C7个D8个10、小明是七年级的一名学生,他的身高可能是( )A165mmB165cmC1
5、65dmD165m第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程即为例加以说明数学家赵爽(公元34世纪)在其所著的勾股圆方图注中记载的方法是:构造图(如下面左图)中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程的正确构图是_(只填序号)2、某人的身份证是 469003200712018617 ,则这个人出生的年、月、日是_3、方程的两根满足,且,则实数a的取值范围是_4、观察下列球
6、的排列规律(其中是实心球,是空心球):从第1个球起到第2004个球止,共有实心球_个5、甲、乙两人沿同一条直路走步,如果两人分别从这条道路上的两处同时出发,都以不变的速度相向而行,图1是甲离开处后行走的路程(单位:)与行走时(单位:)的函数图象,图2是甲、乙两人之间的距离(单位:)与甲行走时间x(单位:)的函数图象,则_三、解答题(5小题,每小题10分,共计50分)1、庆祝小丽十三岁生日那天,小丽和位好朋友一起均匀地围坐在一张半径为厘米的圆桌旁,每人离圆桌的距离均为厘米后来小丽的爸爸和妈妈也赶到了,在座的每个人都向后挪动了相同的距离,再左右调整位置,使人都坐下,此时人之间的距离与原来人之间的距
7、离(即在圆周上两人之间的圆弧的长)相等,那么每人向后挪动的距离是多少厘米?2、如图是某区域的平面示意图,码头A在观测站B的正东方向,码头A的北偏西方向上有一小岛C,小岛C在观测站B的北偏西方向上,码头A到小岛C的距离AC为10海里(1)填空: 度, 度;(2)求观测站B到AC的距离BP(结果保留根号)3、如图,在斜坡的顶部有一铁塔AB,B是CD的中点,CD是水平的,在阳光的照射下,塔影DE留在坡面上.若铁塔底座宽CD=12m,塔影长 m,小明和小华的身高都是1.6m,同一时刻小明站在点E处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2m和1m,求塔高AB4、某“综合与实践”
8、小组开展了测量本校旗杆高度的实践活动他们制定了测量方案,并利用课余时间完成了实地测量他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取他们的平均值作为测量结果,测量数据如下表(不完整)课题测量旗杆的高度成员组长: 组员:,测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内点C,D,E在同一直线上,点E在
9、GH上测量数据测量项目第一次第二次平均值GCE的度数25.625.825.7GDE的度数31.230.831A,B之间的距离5.4m5.6m任务一:两次测量A,B之间的距离的平均值是_m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度(参考数据:sin25.70.43,cos25.70.90,tan25.70.48,sin310.52,cos310.86,tan310.60)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳你认为其原因可能是什么?(写出一条即可)5、概念学习规定:求若干个相同的有理数(均不等于
10、0)的除法运算叫做除方,如222,(3)(3)(3)(3)等类比有理数的乘方,我们把222记作2,读作“2的圈3次方”,(3)(3)(3)(3)记作(3),读作“3的圈4次方”,一般地,把(a0)记作a,读作“a的圈n次方”初步探究(1)直接写出计算结果:2=_,=_;(2)关于除方,下列说法错误的是_A任何非零数的圈2次方都等于1; B对于任何正整数n,1=1; C3=4 D负数的圈奇数次方结果是负数,负数的圈偶数次方结果是正数深入思考:我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(1)试一试:仿照上面的算式,将下列运算结果
11、直接写成幂的形式(3)=_;5=_;=_(2)想一想:将一个非零有理数a的圈n次方写成幂的形式等于_;(3)算一算:-参考答案-一、单选题1、C【分析】将x=1代入可知a12+a11+a10+a1x+a0的值,将x=-1代入可求得a12-a11+a10-a9+-a1x+a0的值,然后将两式相加可求得a12+a10+a8+a6+a4+a2+a0的值,最后将x=0代入可求得a0的值【详解】解:将x=1代入得:a12+a11+a10+a1x+a0=64,将x=-1代入得:a12-a11+a10-a9+-a1x+a0=0,+得:2(a12+a10+a8+a6+a4+a2+a0)=64a12+a10+a
12、8+a6+a4+a2+a0=32将x=0代入得:a0=64a12+a10+a8+a6+a4+a2=32-64=-32故选:C【点睛】本题主要考查的是求代数式的值,特殊值法的应用是解题的关键2、D【分析】利用如果当m1,n2,分析得出满足mnmn,即可得出错误,由mnmn,进行移项变形得出(m1)(n1)1,即可得出答案【详解】解:如果当m1,n2,满足mnmn,所以:m,n都不等于1;m,n都不等于2;m,n都大于1;这些说法都不可能故错误;再来证明第四个命题:证明:mnmn,mnmn0,mnmn(m1)(n1)1,(m1)(n1)10,即(m1)(n1)1m,n是正整数,(m1)(n1)0,
13、故m和n中至少有一个为1故答案m,n至少有一个等于1正确,故选:D【点睛】此题主要考查了整数问题的综合应用,利用特殊值法解决问题是数学中常用方法,同学们应学会这种方法3、B【分析】应先把最小的移动到B,较大的移动到C,然后把最小的移动到C上,把最大的移动到B,把较小的移动到A,把较大的移动到B,最后把最小的移动到B共需7次【详解】解:需分两步完成:(设最大的圆片为3,较小的为2,最小的为1)先将最小的圆片移动到B柱上:1B,2C,1C,3B,此时完成了第一步,移动了4次;将最大圆片放到B柱后,再将剩下两个,按序排列:1A,2B,1B;此时完成了第二步,移动了3次,因此一共移动了3+4=7次故选
14、B【点睛】解决本题需注意第一步就应把最小的圆片移动到最终要到达的位置上4、B【分析】首先算出3424平方公里的百万分之一大约是多少,然后与选择项比较即可【详解】3424平方公里=3424平方千米=3424000000平方米,3424000000=3424平方米,应是一块操场的面积故选B【点睛】解决本题的关键是把我区面积进行合理换算,得到相应的常见的值5、D【分析】根据数学学科常识即可解答,几何中我们不研究物体的颜色、质量和材质等【详解】几何中研究物体的形状、大小和位置关系,不研究它的颜色、质量和材质等故选D【分析】本题主要考查几何基本知识,理解几何研究的内容是解题关键6、D【解析】试题分析:在
15、同一时刻物高和影长成正比,即在同一时刻的两个物体,影子,经过物体顶部的太阳光线三者构成的两个直角三角形相似根据相似三角形的对应边的比相等,即可求解解:DEAB,DFAC,DEFABC,=,即=,AC=61.5=9米故答案为:9【点评】此题考查相似三角形的实际运用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题7、C【分析】根据两把直尺在刻度10处是对齐的及上面直尺的刻度11与下面直尺对应的刻度是11.6,得出上面直尺的10个小刻度,对应下面直尺的16个小刻度,进而判断出上面直尺的刻度16与下面直尺对应的刻度即可【详解】解:由于两把直尺在刻度10处是对齐
16、的, 观察图可知上面直尺的刻度11与下面直尺对应的刻度是11.6,即上面直尺的10个小刻度,对应下面直尺的16个小刻度,且上面的直尺在刻度15处与下面的直尺在刻度18处也刚好对齐,因此上面直尺的刻度16与下面直尺对应的刻度是18+1.6=19.6,故答案为C【点睛】本题考查了学生对图形的观察能力,通过图形得出上面直尺的10个小刻度,对应下面直尺的16个小刻度是解题的关键8、D【分析】根据题意aij的值要么为1,要么为0,当关键词Ai出现在书Bj中时,元素aij1,否则aij0(i,j为正整数),按照此规定对每个选项分析推理即可【详解】解:根据题意aij的值要么为1,要么为0,A、a21+a51
17、+a613,说明a211,a511,a611,故关键词“A2,A5,A6”同时出现在书B1中,而读者去图书馆寻找书中同时有关键词“A2,A5,A6”的书,故A表述正确;B、当a22+a52+a623时,则a22、a52、a62时必有值为0的,即关键词“A2,A5,A6”不同时具有,从而不选择B2这本书,故B表述正确;C、当a2j,a5j,a6j全是1时,则a2j1,a5j1,a6j1,故关键词“A2,A5,A6”同时出现在书Bj中,则选择Bj这本书,故C表述正确;D、根据前述分析可知,只有当a2j+a5j+a6j3时,才能选择Bj这本书,而a2j+a5j+a6j的值可能为0、1、2、3,故D表
18、述错误,符合题意故选:D【点睛】本题考查了推理与论证,读懂题意,按照规定进行计算与推理是解题的关键9、C【解析】【分析】通过观察图形,找到铁圈的方法:解开1、3、5、13个环即可.【详解】只要解开1、3、5、13个环即可环环都脱离,7所以只要解开7个环即可环环都脱离故选:C【点睛】本题考查了找规律,解题的关键是能够看出解开奇数个环即可环环脱离.10、B【解析】【分析】根据生活实际以及长度的度量进行判断即可.【详解】A、165mm,人的身高不可能这么矮,故A 不符合实际; B、165cm,符合实际;C、165dm就是16.5m,人的身高不可能这么高,故C不符合实际;D、165m,人的身高不可能这
19、么高,故D不符合实际,故选B.【点睛】本题考查了对于生活中数据的估测,应从实际的角度出发进行判断,也可从自己的角度出发判断,对日常生活中的一些相关数据有所了解是解题的关键.二、填空题1、【分析】仿造案例,构造面积是的大正方形,由它的面积为,可求出,此题得解【详解】解:即,构造如图中大正方形的面积是,其中它又等于四个矩形的面积加上中间小正方形的面积,即,据此易得故答案为【点睛】本题考查了一元二次方程的应用,仿造案例,构造出合适的大正方形是解题的关键2、2007年12月01日【分析】根据题意可直接进行求解【详解】解:由某人的身份证是 469003200712018617 ,则这个人出生的年、月、日
20、是2007年12月01日;故答案为2007年12月01日【点睛】本题主要考查有理数的意义,熟练掌握有理数的意义是解题的关键3、(,1)(1+,+)【分析】根据方程根的个数与判别式之间的关系证明0恒成立,由题意判断出另一个根的范围,再由f(1)0求出a的范围,利用f(0)0进一步确定两个根的关系,再由韦达定理求出a范围,再取交集【详解】解:|x2|x1(1x2),x1(1x2)0,又0x11,x21,设f(x)(a2+1)x22ax3,方程有两根,4a2+12(a2+1)0恒成立,则f(1)a22a20,解得a1+或a1;f(0)3,x20x11,则|x2|x1(1x2)可化简为:x1+x2x1
21、x2,利用韦达定理得,解得a实数a的取值范围是:(,1)(1+,+),故答案为:(,1)(1+,+)【点睛】本题考查了一元二次方程的解法,对于含有参数的方程,借助于判别式的符号以及韦达定理、根的范围对应的函数值的符号,进行求解4、【分析】解决此题的关键是找到规律:每10个球一组;第1,4,5为实心球,第2,3,6,7,8,9,10个为空心球【详解】解:这些球,从左到右,按照固定的顺序排列,每隔10个球循环一次,循环节是每个循环节里有3个实心球我们只要知道2004包含有多少个循环节,就容易计算出实心球的个数2004102004,2004个球里有200个循环节,还余4个球200个循环节里有2003
22、=600个实心球,剩下的4个球里有2个实心球所以,一共有602个实心球5、【分析】从图1,可见甲的速度为,从图2可以看出,当x= 时,二人相遇,即: =120,解得:乙的速度=80,已的速度快,从图2看出已用了b分钟走完全程,甲用了a分钟走完全程,即可求解【详解】解:从图1,可见甲的速度为,从图2可以看出,当时,二人相遇,即:,解得:乙的速度:,乙的速度快,从图2看出已用了分钟走完全程,甲用了分钟走完全程,.故答案为【点睛】本题考查了一次函数的应用,把一次函数和行程问题结合在一起,关键是能正确利用待定系数法求一次函数的解析式,明确三个量的关系:路程=时间速度三、解答题1、【分析】根据人之间的距
23、离与原来人之间的距离相等,列方程求解即可.【详解】解:设每人向后挪动的距离为,则这个人之间的距离是:,人之间的距离是:,根据等量关系列方程得:,解得【点睛】本题考查了与圆相关的计算,属于简单题,熟悉弧长公式是解题关键.2、(1)30,45;(2)(55)海里【分析】(1)由题意得:,由三角形内角和定理即可得出的度数;(2)证出是等腰直角三角形,得出,求出,由题意得出,解得即可【详解】解:(1)由题意得:,;故答案为30,45;(2),是等腰直角三角形,解得:,答:观测站B到AC的距离BP为海里【点睛】本题考查了解直角三角形的应用方向角问题,通过解直角三角形得出方程是解题的关键3、塔高AB为24
24、m.【分析】过点D构造矩形,把塔高的影长分解为平地上的BD,斜坡上的DE然后根据影长的比分别求得AG,GB长,把它们相加即可【详解】如图,过点D作,交AE于点F,过点F作,垂足为点G.由题意得,答:塔高AB为24m.【点睛】本题考查了相似三角形的应用;解决本题的难点是把塔高的影长分为在平地和斜坡上两部分;关键是利用平地和斜坡上的物高与影长的比得到相应的部分塔高的长度4、任务一:5.5;任务二:旗杆GH的高度为14.7m;任务三:答案不唯一,如没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等【分析】任务一:根据两次测量结果直接求平均值就可以得到答案;任务二:设ECxm,解直角三角形即可
25、得到结论;任务三:根据题意得到没有太阳光,或旗杆底部不可能达到相等(答案不唯一)【详解】解:任务一:平均值=(5.4+5.6)2=5.5m故答案为:5.5;任务二:由题意可得,四边形ACDB,ACEH都是矩形,EH=AC=1.5,CD=AB=5.5,设EG=xm,在RtDEG中,DEG=90,GDE=31,tan31=,DE=,在RtCEG中,CEG=90,GCE=25.7,tan25.7=,CE=,CD=CEDE,=5.5,x=13.2,GH=GE+EH=13.2+1.5=14.7.答:旗杆GH的高度为14.7m.任务三:答案不唯一:没有太阳光,旗杆底部不可到达,测量旗杆影子的长度遇到困难等.【点睛】本题考查的是解直角三角形的应用仰角俯角问题,掌握仰角俯角的概念、熟记锐角三角函数的定义是解题的关键5、初步探究(1);8;(2)C;深入思考(1);28;(2);(3)原式=1 【解析】初步探究(1);8;(2)C;深入思考(1);28;(2);(3)原式=1