《精品试题北师大版七年级数学下册第一章整式的乘除综合测评试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《精品试题北师大版七年级数学下册第一章整式的乘除综合测评试题(含详细解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第一章整式的乘除综合测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列计算正确的是()Aa+3a4aBb3b32b3Ca3aa3D(a5)2a72、计算的正确结果是()ABCD
2、3、的值是( )ABCD4、下列各式中,能用平方差公式计算的是()A(a+b)(ab)B(a+b)(ab)C(a+b)(ad)D(a+b)(2ab)5、如图,在边长为的正方形中,剪去一个边长为a的小正方形,将余下部分对称剪开,拼成一个平行四边形,根据两个图形阴影部分面积的关系,可以得到一个关于x,a的恒等式是( )ABCD6、设,则的值为()ABC1D7、下列运算中,结果正确的是( )ABCD8、下列运算正确的是( )ABCD9、下列运算正确的是( )ABCD10、下列运算正确的是()Aa3+a3a6B(a3)2a6C(ab)2ab2D2a3a5a第卷(非选择题 70分)二、填空题(5小题,每
3、小题4分,共计20分)1、若(x2y21)(x2y21)48,则x2y2_2、若(x+2)(x+a)x2+bx8,则ab的值为_3、已知:,则_4、图中的四边形均为长方形,根据图形,写出一个正确的等式:_5、用科学记数法表示0.00000012为_三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)(3)2、王老师在黑板上写下了四个算式:;认真观察这些算式,并结合你发现的规律,解答下列问题:(1) ; (2)小华发现上述算式的规律可以用文字语言概括为:“两个连续奇数的平方差能被8整除”,如果设两个连续奇数分别为2n+1和2n-1(n为正整数),请你用含有n的算式验证小华发现的规
4、律3、计算:4、数学活动课上,老师用图中的1张边长为a的正方形A、1张边长为b的正方形B和2张宽和长分别为a与b的长方形C纸片,排成了如图中的大正方形观察图形并解答下列问题(1)由图和图可以得到的等式为 (用含a,b的代数式表示);(2)小芳想用图的三种纸片拼出一个面积为(a+b)(a+2b)的大长方形,则需要A纸片 张,B纸片 张,C纸片 张(空格处填写数字),并尝试在框线中参考图画出相关的设计图;(3)如图,已知点C为线段AB上的动点,分别以AC、BC为边在AB的两侧作正方形ACED和正方形BCFG,面积分别记作S1、S2,若AB6,图中阴影部分ACF的面积为4,利用(1)中得到的结论求S
5、1+S2的值5、已知,求代数式的值-参考答案-一、单选题1、A【分析】根据合并同类项判断A选项;根据同底数幂的乘法判断B选项;根据同底数幂的除法判断C选项;根据幂的乘方判断D选项【详解】解:A选项,原式4a,故该选项符合题意;B选项,原式b6,故该选项不符合题意;C选项,原式a2,故该选项不符合题意;D选项,原式a10,故该选项不符合题意;故选:A【点睛】此题考查了整式的计算:合并同类项、同底数幂乘法、同底数幂除法、幂的乘方法则,熟记各法则是解题的关键2、A【分析】利用积的乘方的运算法则即可求解【详解】解:,故选:A【点睛】此题主要考查了积的乘方,正确掌握积的乘方的运算法则是解题的关键3、C【
6、分析】同底数幂的乘法:底数不变,指数相加,根据法则直接计算即可.【详解】解:故选:C【点睛】本题考查的是同底数幂的乘法,掌握“同底数幂的乘法法则”是解本题的关键.4、B【分析】根据平方差公式(a+b)(ab)a2b2对各选项分别进行判断【详解】解:A、(a+b)(ab)(a+b)(a+b)两项都相同,不能用平方差公式计算故本选项不符合题意;B、(a+b)(ab)存在相同的项与互为相反数的项,能用平方差公式计算,故本选项符合题意;C、(a+b)(ad)中存在相同项,没有相反项,不能用平方差公式计算故本选项不符合题意;D、(a+b)(2ab)中存在相反项,没有相同项,不能用平方差公式计算故本选项不
7、符合题意;故选:B【点睛】本题考查了平方差公式运用平方差公式计算时,关键要找相同项和相反项,其结果是相同项的平方减去相反项的平方5、C【分析】根据公式分别计算两个图形的面积,由此得到答案【详解】解:正方形中阴影部分的面积为,平行四边形的面积为x(x+2a),由此得到一个x,a的恒等式是,故选:C【点睛】此题考查了平方差公式与几何图形,正确掌握图形面积的计算方法是解题的关键6、A【分析】先根据同底数幂的乘法法则求出的值,再代入计算即可得【详解】解:,解得,则,故选:A【点睛】本题考查了同底数幂的乘法、一元一次方程的应用,熟练掌握同底数幂的乘法法则是解题关键7、C【分析】根据同底数幂的除法,完全平
8、方公式,积的乘方,多项式乘以多项式的计算法则计算求解即可【详解】解:A、,计算错误,不符合题意;B、,计算错误,不符合题意;C、,计算正确,符合题意;D、,计算错误,不符合题意;故选C【点睛】本题主要考查了同底数幂的除法,完全平方公式,积的乘方,多项式乘以多项式,熟知相关计算法则是解题的关键8、D【分析】根据整式的运算法则逐项检验即可【详解】解:A、b2与b3不是同类项,不能合并,故该选项不符合题意;B、,原计算错误,故该选项不符合题意;C、,原计算错误,故该选项不符合题意;D、,正确,故该选项符合题意;故选:D【点睛】本题考查了合并同类项,同底数幂的乘法除法,积的乘方等整式的相关运算法则,能
9、够熟记基本的运算法则并灵活运用,正确计算是解决本题的关键9、B【分析】根据幂的运算和乘法公式逐项判断即可【详解】解:A. ,原选项不正确,不符合题意;B. ,原选项正确,符合题意;C. ,原选项不正确,不符合题意;D. ,原选项不正确,不符合题意;故选:B【点睛】本题考查了幂的运算和乘法公式,解题关键是熟记幂的运算法则和乘法公式10、B【分析】根据同类项的合并、幂的乘方、积的乘方和单项式乘单项式的运算法则分别分析即可【详解】解:A、a3+a3=2a3原计算错误,故该选项不符合题意;B、(a3)2=a6正确,故该选项符合题意;C、(ab)2=a2b2原计算错误,故该选项不符合题意;D、2a3a=
10、6a2原计算错误,故该选项不符合题意;故选:B【点睛】本题考查了同类项的合并、幂的乘方、积的乘方和单项式乘单项式的运算等知识,正确掌握运算法则是解题关键二、填空题1、7【分析】首先利用平方差公式将已知化简,进而得出x2y2的值【详解】解:因为(x2+y2+1)(x2+y21)48,所以(x2+y2)21248,所以(x2+y2)249,x2+y27(负值舍去)故答案为:7【点睛】本题考查了平方差公式,熟记公式是解题的关键2、【分析】先计算等号左边,再根据等式求出a、b的值,最后代入求出ab的值【详解】解:(x+2)(x+a)x2+(2+a)x+2a,又(x+2)(x+a)x2+bx8,x2+(
11、2+a)x+2ax2+bx82+ab,2a8a4,b2ab(4)2故答案为:【点睛】本题考查了多项式乘多项式及负整数指数幂的计算,题目综合性较强,根据等式确定a、b的值是解决本题的关键3、7【分析】两边同时平方,再运用完全平方公式计算即可【详解】解:,故答案为:7【点睛】本题考查了完全平方公式的运算,解题关键是熟练运用完全平方公式进行运算4、 (x2y)(xy)【分析】根据图形,从两个角度计算长方形面积即可求出答案【详解】解:大长方形的面积=(x2y)(xy),大长方形的面积= ,(x2y)(xy),故答案为:(x2y)(xy)【点睛】本题考查多项式乘以多项式,解题的关键是熟练运用运算法则5、
12、【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000012=1.210-7故答案为:1.210-7【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定三、解答题1、(1)(2)(3)【分析】(1)根据单项式乘以单项式可直接进行求解;(2)先去括号,然后再利用多项式除以单项式进行求解即可;(3)把a+b看作整体,然后利用平方差公式及完全平方公式进行化简(1)
13、解:原式=;(2)解:原式=(3)解:原式=【点睛】本题主要考查整式的混合运算,熟练掌握乘法公式及整式的运算是解题的关键2、(1),;(2)见解析【分析】(1)根据题目给出的规律写出和即可;(2)利用平方差公式计算得出答案【详解】(1),故答案为:,;(2),n为正整数,两个连续奇数的平方差是8的倍数【点睛】此题主要考查了平方差公式的应用,正确发现数字变化规律是解题关键3、【分析】根据多项式除以单项式可直接进行求解【详解】解:原式【点睛】本题主要考查多项式除以单项式,熟练掌握多项式除以单项式是解题的关键4、(1)(a+b)2a2+2ab+b2;(2)1,2,3;(3)20【分析】(1)根据大正
14、方形的面积等于各部分图形的面积和即可解决;(2)根据多项式乘以多项式的乘法法则,把(a+b)(a+2b)的结果计算出来即可判断;(3)根据题意可知AC+BC6,ACBC8,然后利用(1)的结论即可解决【详解】解:(1)由题意得:(a+b)2a2+2ab+b2,故答案为:(a+b)2a2+2ab+b2;(2)(a+b)(a+2b)a2+3ab+2b2,故答案为:1,2,3;(3)设ACm,BCn,由题意得:m+n6,mn4,S1+S2m2+n2(m+n)22mn622820【点睛】本题考查了多项式乘以多项式,灵活运用完全平方公式是解题的关键5、5【分析】先用乘法公式进行化简,再整体代入求值即可【详解】解:原式=, =, , ,原式=【点睛】本题考查了整式的化简求值,解题关键是熟练运用乘法公式进行化简,整体代入求值