《精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项测评练习题.docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版初中数学七年级下册第九章不等式与不等式组专项测评练习题.docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组专项测评(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、不等式组的解是xa,则a的取值范围是( )Aa3Ba=3Ca3Da32、若成立,则下列不等式成立的是( )ABCD3、已知x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解,则a的取值范围是( )Aa2Ba1C2a1D2a14、已知 ab,则( )Aa2b2Ba+1b+1CacbcD5、对于不等式4x+7(x-2)8不是它的解的是( )A5B4C3D26、下列说法中,正确的是(
2、)Ax3是不等式2x1的解Bx3是不等式2x1的唯一解Cx3不是不等式2x1的解Dx3是不等式2x1的解集7、如果 , 那么下列不等式中不成立的是( )ABCD8、有两个正数a,b,且ab,把大于等于a且小于等于b的所有数记作a,b例如,大于等于1且小于等于4的所有数记作1,4若整数m在5,15内,整数n在30,20内,那么的一切值中属于整数的个数为( )A6个B5个C4个D3个9、整数a使得关于x的不等式组至少有4个整数解,且关于y的方程13(y2)a有非负整数解,则满足条件的整数a的个数是( )A6个B5个C3个D2个10、如图,天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的
3、取值范围,在数轴上可表示为( )ABCD二、填空题(5小题,每小题4分,共计20分)1、已知点关于轴的对称点在第一象限,则的取值范围是_2、不等式组的解集为_3、若不等式组的解集为则关于、的方程组的解为_4、不等式组的解集是_5、不等式的解集是_三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组):(1),并把它的解集在数轴上表示出来(2)解一元一次不等式组,并写出它的整数解2、为了落实上级关于新型冠状病毒的肺炎疫情防控工作,某校计划给每个教师配备紫外线消毒灯和体温检测仪已知购买1台紫外线消毒灯和2个体温检测仪要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元(1
4、)求紫外线消毒灯和体温检测仪的单价各为多少元;(2)根据学校实际情况,需要购买紫外线消毒灯和体温检测仪共计75件,总费用不超过38500元,且不少于37500元,该校共有几种购买方案?3、我市某生态果园今年收获了吨李子和吨桃子,要租用甲、乙两种货车共辆,及时运往外地,甲种货车可装李子吨和桃子吨,乙种货车可装李子吨和桃子吨(1)共有几种租车方案?(2)若甲种货车每辆需付运费元,乙种货车每辆需付运费元,请选出最佳方案,此方案运费是多少4、解下列不等式:(1);(2)5、a取什么值时,代数式32a的值: (1)大于1?(2)等于1?(3)小于1?-参考答案-一、单选题1、D【分析】根据不等式组的解集
5、为xa,结合每个不等式的解集,即可得出a的取值范围【详解】解:不等式组的解是xa,故选:D【点睛】本题考查了求不等式组的解集的方法,熟记口诀“同大取大,同小取小,大小小大中间找,大大小小找不到”是解本题的关键2、C【分析】根据不等式两边加或减某个数或式子,乘或除以同一个正数,不等号的方向不变;不等式两边乘或除以一个负数,不等号的方向改变解答【详解】解:A、不等式ab两边都乘-1,不等号的方向没有改变,不符合题意;B、不等式ab两边都乘-1,不等号的方向没有改变,不符合题意;C、不等式ab两边都乘2,不等号的方向不变,都减1,不等号的方向不变,符合题意;D、因为0,当=0时,不等式ab两边都乘,
6、不等式不成立,不符合题意;故选:C【点睛】本题考查了不等式的基本性质不等式两边同时乘以或除以同一个数或式子时,一定要注意不等号的方向是否改变3、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围【详解】解:x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解, 且 ,即4(2a+2)0且(a+2)0,解得:a2故选:A【点睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键4、B【分析】根据不等式的性质逐项分析即可【详解】解:A、ab,a-2b-2,故不符合题意; B、ab,-a-b,-
7、a+1-b+1,故符合题意; C、ab,当c0时,acbc不成立,故不符合题意; D、ab,当c0时,不成立,故不符合题意;故选B【点睛】本题考查了不等式的性质:把不等式的两边都加(或减去)同一个整式,不等号的方向不变;不等式两边都乘(或除以)同一个正数,不等号的方向不变;不等式两边都乘(或除以)同一个负数,不等号的方向改变5、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3时,4x+7(x-2)1
8、98,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.6、A【分析】对A、B、C、D选项进行一一验证,把已知解代入不等式看不等式两边是否成立【详解】解:A、当x3时,231,成立,故A符合题意;B、当x3时,231成立,但不是唯一解,例如x4也是不等式的解,故B不符合题意;C、当x3时,231成立,是不等式的解,故C不符合题意;D、当x3时,231成立,是不等式的解,但不是不等式的解集,其解集为:x,故D不符合题意;故选:A【点睛】此题着重考查不等式中不等式的解、
9、唯一解、解集概念之间的区别和联系,是一道非常好的基础题7、D【分析】根据不等式的性质逐个判断即可不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变【详解】解:A、,选项正确,不符合题意;B、,选项正确,不符合题意;C、,选项正确,不符合题意;D、,选项错误,符合题意故选:D【点睛】此题考查了不等式的性质,解题的关键是熟练掌握不等式的性质不等式的性质1:不等式两边同时加上或减去同一个数,不等号的方向不改变;不等式的性质2:不等式两边同时乘以或除以同一个
10、正数,不等号的方向不改变;不等式两边同时乘以或除以同一个负数,不等号的方向要改变8、B【分析】根据已知条件得出5m15,30n20,再得出的范围,即可得出整数的个数【详解】解:m在5,15内,n在30,20内,5m15,30n20,即6,的一切值中属于整数的有2,3,4,5,6,共5个;故选:B【点睛】此题考查了不等式组的应用,求出5m15和30n20是解题的关键9、A【分析】解不等式组中两个不等式得出,结合其整数解的情况可得,再解方程得,由其解为非负数得出,最后根据方程的解必须为非负整数可得的取值情况【详解】解:解不等式,得:,解不等式,得:,不等式组至少有4个整数解,解得,解关于的方程得,
11、方程有非负整数解,则,所以,其中能使为非负整数的有2,3,4,5,6,7,共6个,故选:A【点睛】本题主要考查一元一次不等式组的整数解,解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解10、A【分析】根据天平的图片得到m的取值范围,在数轴上表示m的取值,问题得解【详解】解:由图可知,m的取值范围在数轴上表示如图:故选:A【点睛】本题考查了用数轴表示不等式的取值范围,理解题意,正确得到不等式组是解题关键二、填空题1、【分析】根据题意可知点在第四象限,然后根据第四象限点的坐标特征求解即可【详解】解:点关于轴
12、的对称点在第一象限,点在第四象限,解得:,故答案为:【点睛】本题考查了点的坐标特征以及解一元一次不等式组,根据题意得出点在第四象限是解本题的关键2、【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:解不等式得: 解不等式得:原不等式组的解集为故答案为:【点睛】本题考查了解一元一次不等式组,掌握求不等式组的解集是解题的关键3、【分析】根据已知解集确定出a与b的值,代入方程组求出解即可【详解】解:解不等式得:,解不等式得:,不等式组的解集为-2x3a=2,b=3,代入方程组得:,-得:4y=4,即y=1,把y=1代入得:x
13、=2,则方程组的解为,故答案为:【点睛】本题考查了解二元一次方程组,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键4、【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解不等式得:解不等式得:不等式组的解集是故答案为:【点睛】本题考查了解一元一次不等式组,正确掌握一元一次不等式解集确定方法是解题的关键5、【分析】移项、合并同类项、系数化为1即可求解【详解】解:,即,故答案为:【点睛】本题考查了解一元一次不等式,解题的关键是熟练掌握不等式的性质三、解答题1、(1),数轴见解析;(2),整数解是-3,-2,-1,0【解
14、析】【分析】(1)依次去括号、移项、合并同类项、系数化为1即可得;(2)先求出两个不等式的解集,再求其公共解【详解】解:(1)去括号,得:2x-114x-12+3,移项,得:2x-4x-12+3+11,合并同类项,得:-2x-1,将不等式的解集表示在数轴上如下:(2),解不等式,得x-,解不等式,得x,原不等式组的解为-x,则不等式组的整数解是-3,-2,-1,0【点睛】本题考查了解一元一次不等式、不等式组的整数解和解一元一次不等式组,能求出不等式的解集是解此题的关键2、(1)紫外线消毒灯和体温检测仪的单价分别为650元、400元;(2)有5种购买方案【解析】【分析】(1)设紫外线消毒灯的单价
15、为元,体温检测仪的单价为元,根据“购买1台紫外线消毒灯和2个体温检测仪需要1450元,购买2台紫外线消毒灯和1个体温检测仪需要1700元”,即可列出关于、的二元一次方程组,解方程组即可得出结论;(2)设购买紫外线消毒灯台,则购买体温检测仪个,根据“购买的总费用不超过38500元,且不少于37500元,”,即可得出关于的一元一次不等式组,解不等式组即可得出结论【详解】解:(1)设紫外线消毒灯的单价为元,体温检测仪的单价为元,则由题意得,解得答:紫外线消毒灯的单价为650元,体温检测仪的单价为400元;(2)设购买紫外线消毒灯台,则购买体温检测仪个,解得:,为正整数,该校有5种购买方案【点睛】本题
16、考查了二元一次方程组的应用已经一元一次不等式组的应用,解题的关键是:(1)根据数量关系列出关于、的二元一次方程组;(2)根据数量关系列出关于的一元一次不等式组本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组或不等式组)是关键3、(1)共有三种方案;(2)租甲,乙两种货车各3辆的方案最佳,运费是5100元【解析】【分析】(1)本题的不等式关系为:甲车装的李子的重量+乙车装的李子的重量15,甲车装的桃子的重量+乙车装的桃子的重量8,可根据此不等式关系得出不等式组,求出自变量的取值范围,然后得出符合条件的自变量的值(2)根据(1)得出的租车方案,然后分别比较出各种方案的总费用
17、,判定出最佳的方案【详解】解:(1)设安排甲种货车x辆,乙种货车(6-x)辆,根据题意,得:,解得:,3x5x取整数有:3,4,5,共有三种方案(2)租车方案及其运费计算如下表方案甲种车乙种车运费(元)一3310003+7003=5100二4210004+7002=5400三5110005+7001=5700答:共有三种租车方案,其中第一种方案最佳,运费是5100元【点睛】本题考查了一元一次不等式组的应用,解题的关键是读懂题意,找到关键描述语,根据:水果的重量汽车的运载量列不等式解答4、(1);(2)【解析】【分析】(1)由题意去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不
18、等式的解集;(2)由题意去分母,去括号,移项,合并同类项,不等式的两边同除以未知数的系数即可求得不等式的解集【详解】解:(1),去括号得:,移项,合并同类项得:,不等式的两边同除以得:不等式的解集是:(2),去分母得:,去括号得:,移项,合并同类项得:,不等式的两边同除以得:不等式的解集是:【点睛】本题主要考查一元一次不等式的解法,熟练掌握并利用解一元一次不等式的一般步骤解答是解题的关键5、(1)a1;(2)a =1;(3)a1【解析】【分析】(1)根据代数式大于1列不等式,解不等式即可;(2)根据代数式等于1列方程,解方程即可;(3)根据代数式小于1列不等式,解不等式即可【详解】解:(1)由3-2a1,移项合并得-2a-2,解得a1;(2)由3-2a1,移项合并得-2a-2,解得a =1;(3)由3-2a1,移项合并得-2a-2,解得a1【点睛】本题考查列一元一次不等式与一元一次方程,解一元一次不等式与一元一次方程,掌握列不等式与方程的方法是解题关键