《精品解析2021-2022学年浙教版初中数学七年级下册第五章分式定向训练试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《精品解析2021-2022学年浙教版初中数学七年级下册第五章分式定向训练试题(含答案解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式定向训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、要使分式有意义,实数a必须满足()Aa2Ba2Ca2Da2且a22、若关于的方程的解是正数,则的取值范围为( )ABC且D且3、新型冠状病毒属冠状病毒属,冠状病毒科,体积很小,最大直径不超过140纳米(即0.00000014米)用科学记数法表示0.00000014,正确的是()A1.4107B1.4107C0.14106D141084、纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米米,将0.0
2、00000022用科学记数法表示为( )ABCD5、有一种花粉的直径是0.000064米,将0.000064用科学记数法表示应为( )ABCD6、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD7、已知(),则分式的值为( )A2B2C3D38、已知关于x,y的方程组,则下列结论中正确的是:当a0时方程组的解是方程x+y1的解;当xy时,a;当xy1,则a的值为3或3;不论a取什么实数3xy的值始终不变()ABCD9、用科学记数法表示数0.0000104为( )ABCD10、如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,
3、将0.0006用科学记数法表示为( )ABCD二、填空题(5小题,每小题4分,共计20分)1、2020年9月22日,习近平主席在第七十五届联合国大会一般性辩论上发表重要讲话时指出,中国将提高国家自主贡献力度,采取更加有力的政策和措施,二氧化碳排放力争于2030年前达到峰值,努力争取2060年前实现碳中和二氧化碳是一种碳氧化合物,分子直径约为0.350.51nm,用科学记数法表示0.35nm_m(1nm109m)2、将代数式表示成只含有正整数指数幂的形式为_3、若a,b,c,则a、b、c三个数中最大的数是_4、若,则_5、当x_时,分式的值为零三、解答题(5小题,每小题10分,共计50分)1、解
4、方程:(1);(2)2、计算(1);(2);(3)3、已知a、b互为相反数,m、n互为倒数,求的值4、先化简,再求值:,其中5、解方程(组):(1) (2)-参考答案-一、单选题1、C【分析】根据分式有意义的条件分析即可【详解】有意义,故选C【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件是解题的关键2、C【分析】先解分式方程求解,根据方程的解为正数,求出a的范围,然后将方程的增根代入求出,所以a的取值范围是且【详解】解:解方程,得,是方程的增根,当时,解得,即当时,分式方程有增根,a的取值范围是且故选:C【点睛】本题考查了分式方程的解,熟练解分式方程是解题的关键3、B【分析】根据题意
5、,运用科学计数法的表示方法可直接得出答案,要注意绝对值小于1的数字科学计数法的表示形式为:,其中,n为正整数,n的值由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000014用科学记数法表示为,故选:B【点睛】本题考查了科学计数法的表示方法,属于基础题,正确确定中和的值是解决本题的关键4、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:将0.000000022用科学记数法表示为故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式
6、为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000646.4105故选:D【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定6、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原
7、数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值7、C【分析】由题意可知x=3y,然后根据因式分解法进行化简,再将x=3y代入原式即可求出答案【详解】解:x-3y=0,x=3y,原式= 故选:C【点睛】本题考查分式的运算,解题的关键是熟练运用因式分解法将分式化简,再把x换成3y8、B【分析】把a看做已知数表示出方程组的解,把a0代入求出x与y的值,代入方程检验即可;令xy求出a的值,即可作出判断;把x与y代
8、入3xy中计算得到结果,判断即可;令2x3y求出a的值,判断即可【详解】解:,据题意得:3x3a6,解得:xa2,把xa2代入方程x+y1+4a得:y3a+3,当a0时,x2,y3,把x2,y3代入x+y1得:左边2+31,右边1,是方程的解,故正确;当xy时,a23a+3,即a,故正确;当xy1时,(a2)3a+31,即a1,或 或 故错误3xy3a63a39,无论a为什么实数,3xy的值始终不变为9,故正确正确的结论是:,故选:B【点睛】此题考查了二元一次方程组的解,二元一次方程的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键9、B【分析】绝对值小于1的数也可以利用科学记数法表示
9、,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0000104=1.0410-5,故选:B【点睛】本题考查科学记数法,解答本题的关键是明确科学记数法的方法10、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0006=610-4 故选B【点睛】本题主要考查了用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个
10、不为零的数字前面的0的个数所决定二、填空题1、【分析】科学记数法的表示形式为的形式,其中,为整数确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数的绝对值大于等于10时,为正数,小于1时,为负数【详解】解:,故答案为:【点睛】此题主要考查了科学记数法的表示方法科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值2、【分析】根据负整数指数幂的意义,将代数式中负整数指数幂写成正整数指数幂的形式即可【详解】解:=故答案为:【点睛】本题考查了负整数指数幂,掌握负整数指数幂的计算()是解题的关键3、a【分析】根据负整数指数幂和零指数幂分别计算
11、,据此可得【详解】解:a,b,c1,a、b、c三个数中最大的数是a,故答案为:a【点睛】本题主要考查有理数的大小比较,解题的关键是熟练掌握负整指数幂和零指数幂4、【分析】由,得x+y=2,整体代入所求的式子化简即可【详解】由,得x+y=2xy,则=【点睛】本题考查了分式的基本性质,解题的关键是用到了整体代入的思想5、= 3【分析】根据分母为0是分式无意义,分式值为零的条件是分子等于零且分母不等于零列式计算即可【详解】解:根据题意,分式的值为零,;故答案为:【点睛】本题考查的是分式为0的条件、分式有意义的条件,掌握分式值为零的条件是分子等于零且分母不等于零是解题的关键三、解答题1、(1)x4;(
12、2)x2【分析】两分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:(1)方程两边同时乘以x2得x3+x23,解整式方程得,x4,检验:当x4时,x20x4是原方程的解(2)方程两边同时乘以(x1)(2x+3)得:2x2x62(x2)(x1),整理得:5x10,解得:x2,检验:当x2时,(x1)(2x+3)0,分式方程的解为x2【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验2、(1)5.125;(2);(3)【分析】(1)根据负整数指数幂法则,零指数幂法则以及幂的乘方法则的逆用及积的乘方法则的逆用逐步计算即可;(2)根据积的
13、乘方法则及单项式乘单项式法则、单项式除以单项式法则逐步计算即可;(3)先将原式变形为,再利用平方差公式及完全平方公式计算即可【详解】解:(1)原式;(2)原式;(3)原式【点睛】本题考查了实数的混合运算及整式的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键3、【分析】直接利用相反数和倒数的定义求出代数式的值,再整体代入分式计算即可【详解】解:a、b互为相反数,m、n互为倒数, a+b=0,mn=1, 【点睛】此题主要考查了相反数和倒数的定义等知识,正确运用整体思想是解题关键4、;1【分析】将分式通分相加然后约分,代入求值即可【详解】解:原式=,当时,原式=1【点睛】本题考查了分式的化简求值,熟练掌握分式的运算法则是解题的关键5、(1)无解;(2)【分析】(1)先去分母,把方程化为整式方程,再解整式方程并检验,从而可得答案;(2)利用加减消元法,先消去未知数,求解,再求解,从而可得答案.【详解】解:(1)去分母,得移项、合并同类项,得,经检验:是原方程的增根,所以原方程无解(2)由,得,把代入,得原方程的解是【点睛】本题考查的是分式方程的解法,二元一次方程的解法,熟练两种方程的解法与步骤是解题的关键,分式方程的检验是易错点.