《2022中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述章节测试试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述章节测试试题(含解析).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第十章数据的收集、整理与描述章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、为了估计鱼塘中的鱼数,养鱼者首先从鱼塘中打捞n条鱼,在每一条鱼身上做好记号后把这些鱼放归鱼塘,再从鱼塘中打捞a条鱼,如果在这a条鱼中有b条鱼是有记号的,那么估计鱼塘中鱼的条数为()ABCD2、下列调查中,适合采用全面调查方式的是()A对横锦水库水质情况的调查B新冠疫情期间,对某高危县市居民的体温进行调查C某厂生产出的口罩进行质量合格率的调查D春节期间对某类烟花爆竹燃放安全情况的调查3、下列问
2、题不适合用全面调查的是( )A旅客上飞机前的安检B企业招聘,对应试人员进行面试C了解全班同学每周体育锻炼的时间D调查市场上某种食品的色素含量是否符合国家标准4、下列说法中正确的个数是()个a表示负数;若|x|x,则x为正数;单项式的系数是;多项式3a2b+7a2b22ab1的次数是4;了解全市中小学生每天的零花钱适合抽样调查;调查七年级(1)班学生的某次数学考试成绩适合抽样调查A1B2C3D45、某校九年级(3)班团支部为了让同学们进一步了解中国科技的发展,给班上同学布置了一项课外作业,从选出的以下五个内容中任选部分内容进行手抄报的制作:A、“北斗卫星”;B、“5G时代”;C、“智轨快运系统”
3、;D、“东风快递”;E、“高铁”,统计同学们所选内容的频数,绘制如图所示的折线统计图,则选择“5G时代”的频率是( )A0.25B0.3C2D306、如图是某校九年级部分男生做俯卧撑的成绩(次数)进行整理后,分成五组,画出的频率分布直方图,已知从左到右前4个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频数为25,若合格成绩为20,那么此次统计的样本容量和本次测试的合格率分别是( )A100,55%B100,80%C75,55%D75,80%7、数字“20211202”中,数字“2”出现的频数是()A1B2C3D48、下列调查中,适合进行全面调查的是( )A新闻联播电视栏目
4、的收视率B全国中小学生喜欢上数学课的人数C某班学生的身高情况D市场上某种食品的色素含量是否符合国家标准9、下列调查中,适合采用全面调查(普查)方式的是()A了解江西省中小学生的视力情况B在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测C了解全国快递包裹产生包装垃圾的数量D了解抚州市市民对社会主义核心价值观的内容的了解情况10、要调查下列问题,适合采用普查的是( )A中央电视台开学第一课的收视率B某城市居民6月份人均网上购物的次数C即将发射的气象卫星的零部件质量D银川市中小学生的视力情况二、填空题(5小题,每小题4分,共计20分)1、现将一组数据:21,25,23,25,27,29,
5、25,30,28,29,26,24,27,25,26,22,24,25,26,28分成五组,其中26.5x28.5的频数是_2、小鸡孵化场孵化出一批小鸡,工人在其中50只小鸡上做记号后让这批小鸡充分跑散;后来再任意抓出200只小鸡,其中有记号的有5只,则这批小鸡大约有_只3、为了解学生体质健康水平,某校抽查了名学生每分钟跳绳次数,获得如下数据(单位:次), ,则跳绳次数在这一组的频数是_4、某市移动公司为了调查手机发送短信的情况,在本区域的100位用户中随机抽取了10位用户来统计他们某周发送短信的条数,结果如下表:手机用户序号12345678910发送短信条数20192020211715232
6、025本次调查中,这100位用户大约每周共发送_条短信5、某调查小组就400名学生对小品的喜欢程度进行了调查,并将调查结果用条形统计图进行表示已知条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为,那么将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的圆心角的度数是_三、解答题(5小题,每小题10分,共计50分)1、某校数学兴趣小组的同学,为了了解初一学生上学期参加公益活动的情况,随机调查了学校部分初一学生,并用得到的数据绘制了下面两幅统计图(统计图不完整)根据统计图中的信息完成下列问题:(1)本次随机调查了名学生;(2)扇形统计图中的a;(3)对于“参加
7、公益活动为6天”的扇形,对应的圆心角为度2、深圳某中学全校学生参加了“庆祝中国共产党成立100周年”知识竞赛,为了解全校学生竞赛成绩的情况,随机抽取了一部分学生的成绩,分成四组:A:70分以下(不包括;,并绘制出不完整的统计图(1)被抽取的学生成绩在组的有_人,请补全条形统计图;(2)被抽取的学生成绩在组的对应扇形圆心角的度数是_;(3)若该中学全校共有2400人,则成绩在组的大约有多少人?3、每年夏天全国各地总有未成年人因溺水而丧失生命,令人痛心疾首今年某中学为确保学生安全,开展了“远离溺水,珍爱生命”的防溺水安全竞赛学校对参加比赛的学生获奖情况进行了统计,绘制了如下两幅不完整的统计图,请结
8、合图中相关数据解答下列问题(1)参加此安全竞赛的学生共有人;(2)在扇形统计图中,“三等奖”所对应的扇形的圆心角的度数为(3)将条形统计图补充完整4、在推进城乡生活垃圾分类的行动中,社区从,两个小区各随机选择50位居民进行问卷调查,并得到他们的成绩,将成绩定为“不了解”,为“比较了解”,为“非常了解”,并绘制了如图的统计图:(每一组不包含前一个边界值,包含后一个边界值)已知小区共有常住居民500人,小区共有常住居民400人,(1)请估计整个小区达到“非常了解”的居民人数(2)将“比较了解”和“非常了解”的人数作为普及到位的居民,请估计整个小区普及到位的居民人数(3)你认为哪个小区垃圾分类的普及
9、工作更出色?请通过计算并用合适的数据来说明5、某学校为了推动运动普及,拟成立多个球类运动社团,为此,学生会采取抽样调查的方法,从足球、乒乓球、篮球、排球四个项目调查了若干名学生的兴趣爱好(要求每位同学只能选择其中一种自己喜欢的球类运动),并将调查结果绘制成了如下条形统计图和扇形统计图(不完整),请你根据图中提供的信息,解答下列问题:(1)本次调查的学生共有多少人;(2)请将条形统计图和扇形统计图补充完整;(3)若该学校共有学生2000人,根据以上数据分析,试估计选择足球运动的同学有多少人?-参考答案-一、单选题1、A【解析】【分析】首先求出有记号的b条鱼在a条鱼中所占的比例,然后根据用样本中有
10、记号的鱼所占的比例等于鱼塘中有记号的鱼所占的比例,即可求得鱼的总条数【详解】解:打捞a条鱼,发现其中带标记的鱼有b条,有标记的鱼占,共有n条鱼做上标记,鱼塘中估计有n(条)故选:A【点睛】此题考查了用样本估计总体,关键是求出带标记的鱼占的百分比,运用了样本估计总体的思想2、B【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答【详解】解:A、对横锦水库水质情况的调查,适合抽样调查,故本选项不合题意;B、新冠疫情期间,对某高危县市居民的体温进行调查,适合全面调查,故本选项符合题意;C、某厂生产出的口罩进行质量合格率的调查,适合抽样调查,
11、故本选项不合题意;D、春节期间对某类烟花爆竹燃放安全情况的调查,适合抽样调查,故本选项不合题意故选:B【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3、D【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,根据以上逐项分析可知【详解】解:A. 旅客上飞机前的安检,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意, B. 企业招聘,对应
12、试人员进行面试,人员不多,且这个调查很重要不可漏掉任何人,适合全面调查,不符合题意,C. 了解全班同学每周体育锻炼的时间,人员不多,适合全面调查,不符合题意, D. 调查市场上某种食品的色素含量是否符合国家标准,调查具有破坏性,不适合全面调查,符合题意故选D【点睛】本题考查的是全面调查与抽样调查,在调查实际生活中的相关问题时,要灵活处理,既要考虑问题本身的需要,又要考虑实现的可能性和所付出代价的大小理解全面调查与抽样调查的适用范围是解题的关键4、B【解析】【分析】直接根据单项式以及多项式的相关概念,正数和负数,抽样调查和全面调查的概念进行判断即可【详解】解:a表示一个正数、0或者负数,故原说法
13、不正确;若|x|x,则x为正数或0,故原说法不正确;单项式的系数是,故原说法不正确;多项式3a2b+7a2b22ab1的次数是4,故原说法正确;了解全市中小学生每天的零花钱适合抽样调查,故原说法正确;调查七年级(1)班学生的某次数学考试成绩适合全面调查,故原说法不正确正确的个数为2个,故选:B【点睛】本题考查了多项式、正数和负数、抽样调查和全面调查及绝对值的性质,掌握它们的性质概念是解本题的关键5、B【解析】【分析】先计算出九年级(3)班的全体人数,然后用选择“5G时代”的人数除以九年级(3)班的全体人数即可【详解】由图知,九年级(3)班的全体人数为:25+30+10+20+15=100(人)
14、,选择“5G时代”的人数为:30人,选择“5G时代”的频率是:0.3;故选:B【点睛】本题考查了频数分布折线图,及相应频率的计算,熟知以上知识是解题的关键6、B【解析】【分析】根据频率分布直方图的意义,从左到右各个小组的频率之和是1,结合题意,可得第五小组的频率,进而根据同时每小组的频率=小组的频数:总人数可得此次统计的样本容量;又因为合格成绩为20,可得本次测试的合格率,即答案【详解】解:由频率的意义可知,从左到右各个小组的频率之和是1,从左到右前四个小组的频率分别是0.05,0.15,0.25,0.30,第五小组的频率是,此次统计的样本容量是合格成绩为20,本次测试的合格率是故选B【点睛】
15、本题属于统计内容,考查分析频数分布直方图和频率的求法解本题要懂得频率分布直分图的意义,了解频率分布直分图是一种以频数为纵向指标的条形统计图7、D【解析】【分析】根据频数的定义(频数又称“次数”,指变量中代表某种特征的数出现的次数)求解即可【详解】解:数字“20211202”中,共有4个“2”,数字“2”出现的频数为4,故选:D【点睛】题目主要考查频数的定义,理解频数的定义是解题关键8、C【解析】【详解】解:A、“新闻联播电视栏目的收视率”适合进行抽样调查,则此项不符题意;B、“全国中小学生喜欢上数学课的人数” 适合进行抽样调查,则此项不符题意;C、“某班学生的身高情况”适合进行全面调查,则此项
16、符合题意;D、“市场上某种食品的色素含量是否符合国家标准” 适合进行抽样调查,则此项不符题意;故选:C【点睛】本题考查了全面调查与抽样调查,熟练掌握全面调查的定义(为了一定目的而对考察对象进行的全面调查,称为全面调查)和抽样调查的定义(抽样调查是指从总体中抽取样本进行调查,根据样本来估计总体的一种调查)是解题关键9、B【解析】【分析】由题意根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似进行分析判断即可【详解】解:A. 了解江西省中小学生的视力情况,适合采用抽样调查,A不合题意;B. 在“新型冠状病肺炎”疫情期间,对出入某小区的人员进行体温检测,应该
17、采用全面调查(普查),B符合题意;C. 了解全国快递包裹产生包装垃圾的数量,适合采用抽样调查,C不合题意;D. 了解抚州市市民对社会主义核心价值观的内容的了解情况,适合采用抽样调查,D不合题意.故选:B.【点睛】本题考查抽样调查和全面调查的区别,注意掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查10、C【解析】【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,再逐一分析各选项即可得到答案.【详解】解
18、:A、调查中央电视台开学第一课的收视率,适合抽查,故本选项不合题意; B、调查某城市居民6月份人均网上购物的次数,适合抽查,故本选项不合题意; C、调查即将发射的气象卫星的零部件质量,适合采用全面调查(普查),故本选项符合题意; D、调查银川市中小学生的视力情况,适合抽查,故本选项不合题意 故选:C【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查二、填空题1、4【解析】【分析】先将各数据划记到对应的小组,再正确
19、数出第四组26.528.5的频数即可【详解】解:这组数据中26.5x28.5的数据,即是数据27、28出现的次数,通过统计数据27、28共出现4次,故答案为:4【点睛】本题考查频率、频数的概念,一般称落在不同小组中的数据个数为该组的频数,频数与数据总数的比值为频率2、2000【解析】【分析】用做标记的小鸡数量除以有记号小鸡的数量占被抽查小鸡数量的比例即可得到答案【详解】解:这批小鸡的只数大约为(只,故答案为:2000【点睛】本题主要考查用样本估计总体,解题的关键是掌握从一个总体得到一个包含大量数据的样本,我们很难从一个个数字中直接看出样本所包含的信息这时,我们用频率分布直方图来表示相应样本的频
20、率分布,从而去估计总体的分布情况3、4【解析】【分析】首先找出在90110这一组的数据个数,可得答案【详解】解:在这10个数据中,跳绳次数在90110这一组的有4个,跳绳次数在90110这一组的频数是4故答案为:4【点睛】此题主要考查了频数与频率,关键是掌握频率=频数总数4、2000【解析】【分析】先求出样本的平均数,再根据总体平均数约等于样本平均数列式计算即可【详解】这10位用户该周发送短信的平均数是:(条),这100位用户大约每周共发送(条)短信【点睛】此题考查了用样本估计总体,用到的知识点是总体平均数约等于样本平均数5、【解析】【分析】根据条形图中长方形的面积比求得各个量的比值为6:9:
21、2:1,再求扇形的圆心角度数【详解】解:条形统计图中非常喜欢、喜欢、有一点喜欢、不喜欢四类满意程度对应的小长方形面积的比为6:9:2:1,将这个调查结果用扇形统计图表示时,不喜欢部分对应的扇形的圆心角的度数是36020,故答案为:【点睛】扇形统计图中,所表示的量的扇形所占圆的面积的百分比是它在总量中所占的百分比所以该量所表示的扇形的圆心角度数是360度它在总量中所占的百分比本题的解题关键是根据条形图中长方形的面积比求得各个量的比值三、解答题1、(1)100;(2)25;(3)54【分析】(1)根据4天的人数及百分比求出总人数即可;(2)先算出参加公益活动7天的人数,再用总人数减去其它天数的人数
22、,求出参加公益活动为5天的人数,再用5天的人数除以总人数即可求出;(3)根据圆心角=360百分比计算即可【详解】解:(1)本次随机调查的学生数是:3030%100(名);故答案为:100;(2)7天的人数有:1005%5(名),5天的人数有:10010153015525(名),则扇形统计图中的a%100%25%即a25;故答案为:25;(3)“参加公益活动为6天”的扇形,对应的圆心角为:36054;故答案为:54【点睛】本题考查了条形统计图、扇形统计图等知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键条形统计图能清楚地表示出每个项目的数据,扇形统计图直接反映部分占总体的百分比大
23、小2、(1)24,图见解析;(2)36;(3)480人【分析】(1)由D组人数及其所占百分比求出被调查总人数,总人数减去A、B、D组人数即可求出C组人数,从而补全图形;(2)用360乘以A组人数所占比例即可;(3)用总人数乘以样本中B组人数所占比例即可【详解】解:(1)被抽取的总人数为1830%=60(人),C组人数为60-(6+12+18)=24(人),补全图形如下:故答案为:24(2)被抽取的学生成绩在A组的对应扇形圆心角的度数为360=36,故答案为:36;(3)成绩在B组的大约有2400=480(人)【点睛】本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用
24、数形结合的思想解答3、(1)40;(2)90;(3)见解析【分析】(1)从两个统计图中可知“特等奖”的有18人,占全部参加竞赛人数的45%,可求出参加竞赛人数;(2)求出“三等奖”所占的百分比,即可求出相应的圆心角的度数;(3)求出“二等奖”的人数,即可补全条形统计图【详解】解:(1)1845%40(人),故答案为:40;(2)36090,故答案为:90;(3)40410188(人),补全条形统计图如图所示:【点睛】本题考查条形统计图、扇形统计图的意义和制作方法,理解两个统计图中的数量关系是正确解答的关键4、(1)96人;(2)250人;(3)B小区垃圾分类的普及工作更出色,见解析【分析】(1
25、)用整个B小区总人数乘以样本中“非常了解”的人数的百分比,即可估计整个B小区达到“非常了解”的居民人数;(2)用整个A小区总人数乘以样本中“比较了解”和“非常了解”的人数的频率,即可估计整个A小区普及到位的居民人数;(3)计算出两个小区样本“不了解”的人数的百分比,用样本估计总体【详解】解:(1)估计整个小区达到“非常了解”的居民人数有:(人); (2)整个小区普及到位的居民人数有:(人);(3)整个小区“不了解”的:;整个小区“不了解”的44%因为44%50%所以小区垃圾分类的普及工作更出色【点睛】本题考查了用样本估计总体,调查收集数据的过程与方法,解决本题的关键是掌握用样本估计总体5、(1
26、)人;(2)画图见解析;(3)人【分析】(1)由喜欢足球的有100人,占比25%,列式,再计算即可得到答案;(2)分别求解喜欢排球的占比为: 喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,再补全图形即可;(3)由样本中喜欢足球的占比乘以总体的总人数即可得到答案.【详解】解:(1)由喜欢足球的有100人,占比25%,可得:本次调查的学生共有人,(2)喜欢排球的占比为: 所以喜欢篮球的占比为: 喜欢篮球的人数为:人,喜欢乒乓球的人数有:人,所以补全图形如下:(3)该学校共有学生2000人,则选择足球运动的同学有:人.【点睛】本题考查的是从条形图与扇形图中获取信息,补全条形图与扇形图,利用样本估计总体,熟练的从两个图形中得到互相关联的信息是解本题的关键.