中考专题特训浙教版初中数学七年级下册第五章分式综合测试练习题.docx

上传人:可****阿 文档编号:32554351 上传时间:2022-08-09 格式:DOCX 页数:14 大小:190.83KB
返回 下载 相关 举报
中考专题特训浙教版初中数学七年级下册第五章分式综合测试练习题.docx_第1页
第1页 / 共14页
中考专题特训浙教版初中数学七年级下册第五章分式综合测试练习题.docx_第2页
第2页 / 共14页
点击查看更多>>
资源描述

《中考专题特训浙教版初中数学七年级下册第五章分式综合测试练习题.docx》由会员分享,可在线阅读,更多相关《中考专题特训浙教版初中数学七年级下册第五章分式综合测试练习题.docx(14页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第五章分式综合测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列运算错误的是( )ABCD2、2020年6月23日9时43分,我国成功发射了北斗系统第55颗导航卫星,其授时精度为世界之最,不超过0.0000000099秒将数据0.0000000099用科学记数法表示为( )ABCD3、在研制新冠肺炎疫苗过程中,某细菌的直径大小为米,用科学记数法表示这一数字,正确的是( )ABCD4、下列说法中正确的是( )A是整式B和0都是单项式C单项式的系数为D多项式的次数是35、

2、当时,代数式的值是( )A3B4C5D66、据成都新闻报道,某种病毒的半径约为5纳米,1纳米109米,则该病毒半径用科学记数法表示为()A5106米B5107米C5108米D5109米7、抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务设原来每天生产x台呼吸机,下列列出的方程中正确的是()A+2B+2C2D28、世界上最小的动物是原生动物中一种同肋膜肺炎菌相似的单细胞动物,它只有0.1微米长,即0.0000001米,只有在显微镜下才能看到,其中数字0.0000001用科学记数法表示

3、为( )ABCD9、蚕丝线的截面面积0.000000785平方厘米,此面积数字可用科学记数法表示为()A7.85106B7.85106C7.85107D7.8510710、等于( )ABCD二、填空题(5小题,每小题4分,共计20分)1、计算:_2、若,则_3、已知a、b为实数,且,设,则M、N的大小关系是M_ N(填=、)4、将代数式表示成只含有正整数指数幂的形式为_5、如果分式有意义,那么x的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)2、计算:(1)(3.14)0()2+|2|;(2)(2x+1)2x(4x1)3、计算:(1)计算:(1)2010+(

4、)2(3.14)0;(2)计算:x(x+2y)(x+1)2+2x4、(1)计算:(2)化简:5、已知,求代数式的值-参考答案-一、单选题1、A【分析】利用负整数指数幂的性质和零次幂的性质、乘方的意义进行计算【详解】解:A、(0.1)110,故原题计算错误;B、,故原题计算正确;C、,故原题计算正确;D、121,故原题计算正确;故选:A【点睛】此题主要考查了负整数指数幂,关键是掌握负整数指数幂:ap(a0,p为正整数),零指数幂:a01(a0)2、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为 a,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数 n 由原数左边起第一

5、个不为零的数字前面的0的个数所决定【详解】解: 0.0000000099=,故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为 a,其中 1|a|10 , n 为由原数左边起第一个不为零的数字前面的0的个数所决定3、C【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选C【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键4、B【分析】根据分母中含有字母,可判断A不正确,根据单项式定义可判断B正确;根据单项式系数定义

6、可判断C不正确;根据多项式的次数定义可判断D不正确【详解】解:A. 分母中有字母,是分式,不是整式,故选项A不正确;B. 和0都是单项式,故选项B正确;C. 单项式的系数为,不是,故选项C不正确;D. 多项式中单项式是4次,所以多项式的次数是4而不是3,故选项D不正确故选择B【点睛】本题考查分式与整式的区别,单项式,单项式系数,多项式次数,熟练掌握相关定义是解题关键5、B【分析】根据,得b=3a,代入计算即可【详解】解:,b=3a,=,故选:B【点睛】此题考查求分式的值,根据已知得到b=3a代入计算是求解的关键6、D【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为,与较大数的科学

7、记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:5纳米故选:D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为,其中,为由原数左边起第一个不为零的数字前面的0的个数所决定7、D【分析】根据完成前一半所用时间+后一半所用时间原计划所用时间2可列出方程【详解】解:设原来每天生产x台呼吸机,根据题意可列方程:2,整理,得:2,故选:D【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系,并根据相等关系列出方程8、B【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判

8、断即可【详解】故选B【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键9、C【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000000785=7.8510-7故选:C【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、A【分析】直接利用负

9、整数指数幂的性质化简得出答案【详解】解:3-1=,故选:A【点睛】此题主要考查了负整数指数幂的性质,正确掌握相关性质是解题关键二、填空题1、【分析】先将分母因式分解,再进行加减,即可求解【详解】解:原式故答案为:【点睛】本题主要考查了分式加减,熟练掌握分式的基本性质是解题的关键2、0,6,8,【分析】根据非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,可得答案【详解】解:m0时,(7)01,m71时,m8,(m7)81,m71时(m7)61,故答案为:0,6,8【点睛】本题考查了零次幂,非零的零次幂等于1,(1)的偶数次幂等于1,1的任何次幂等于1,以防遗漏3、=【分析】本题只

10、需要先对M、N分别进行化简,再把代入即可比较M、N的大小【详解】解:,MN,故答案为:【点睛】本题考查了分式的混合运算,在解题时要注意先对分式进行化简,再代入求值即可4、【分析】根据负整数指数幂的意义,将代数式中负整数指数幂写成正整数指数幂的形式即可【详解】解:=故答案为:【点睛】本题考查了负整数指数幂,掌握负整数指数幂的计算()是解题的关键5、x5【分析】根据分式有意义的条件可得x+50,即可得出答案【详解】解:由题意得:x+50,解得:x5,故答案为:x5【点睛】本题考查了分式有意义的条件,分式有无意义的判断方法,分式有意义的条件:分式的分母不等于0,分式无意义的条件:分式的分母等于0三、

11、解答题1、(1);(2)【分析】(1)直接利用度分秒换算法则计算得出答案;(2)直接利用同底数幂的乘除运算法则计算得出答案【详解】解:(1)原式(2)原式【点睛】此题主要考查了同底数幂的乘除运算、度分秒换算,正确掌握相关运算法则是解题关键2、(1)-1;(2)5x+1【分析】(1)先分别化简零指数幂,负整数指数幂,绝对值,然后再计算;(2)整式的混合运算,先算乘方,单项式乘多项式,然后再算加减【详解】解:(1)原式=1-4+2=-1;(2)原式=4x2+4x+1-4x2+x=5x+1【点睛】本题考查零指数幂,负整数指数幂,整式的混合运算,掌握运算法则准确计算是解题关键3、(1)9;(2)2xy

12、-1【分析】(1)直接利用乘方、负整数指数幂的性质以及零指数幂的性质分别化简得出答案;(2)利用单项式乘多项式及完全平方公式展开,然后合并同类项即可得解【详解】解:(1)(1)2010+()2(3.14)0=1+9-1=9;(2)x(x+2y)(x+1)2+2x=x2+2xy-(x2+2x+1)+2x=x2+2xy-x2-2x-1+2x=2xy-1【点睛】本题考查了整式的化简,以及乘方、负整数指数幂、零次幂,关键熟练掌握各运算法则4、(1)-4;(2)【分析】(1)通过负指数幂、零次幂及有理数的乘方可进行求解;(2)根据积的乘方、单项式乘单项式及单项式除单项式可进行求解【详解】解:(1)原式=;(2)原式=【点睛】本题主要考查负指数幂、零次幂、积的乘方、单项式乘单项式及单项式除单项式,熟练掌握相关运算法则是解题的关键5、【分析】根据题意首先对代数式进行化简,然后将代入求解即可【详解】解:原式,当时,原式【点睛】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁