《中考专题特训浙教版初中数学七年级下册第五章分式同步测试练习题.docx》由会员分享,可在线阅读,更多相关《中考专题特训浙教版初中数学七年级下册第五章分式同步测试练习题.docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式同步测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、某种冠状病毒细胞的直径约为m,用科学记数法表示该数是( )ABCD2、一项工作,甲、乙两人合作,4天可以完成他们合作了3天后,乙另有任务,甲单独又用了天才全部完成问甲、乙两人单独做,各需几天完成?设甲单独做需要x天,根据题意可列出方程()ABCD3、 “五一”节期间,几名同学包租一辆面包车前去旅游,面包车的租价为180元,出发时又增加了两名同学,结果每个同学比原来少摊了3元钱车费,设实际参加游览的同学共x人,
2、则所列方程为( )ABCD4、新型冠状病毒属冠状病毒属,冠状病毒科,体积很小,最大直径不超过140纳米(即0.00000014米)用科学记数法表示0.00000014,正确的是()A1.4107B1.4107C0.14106D141085、若,则( )ABCD6、抗击“新冠肺炎”疫情中,某呼吸机厂家接到一份生产300台呼吸机的订单,在生产完成一半时,应客户要求,需提前供货,每天比原来多生产20台呼吸机,结果提前2天完成任务设原来每天生产x台呼吸机,下列列出的方程中正确的是()A+2B+2C2D27、关于的分式方程有增根,则的值为( )A1BC2D8、如果x1,那么x1,x,x2的大小关系是()
3、Ax1xx2Bxx1x2Cx2xx1Dx2x1x9、已知实数,满足:,则的值为( )A1BC7D10、下列说法中正确的是( )A是整式B和0都是单项式C单项式的系数为D多项式的次数是3二、填空题(5小题,每小题4分,共计20分)1、计算_2、已知a23a10,则a2+_3、这些年“舌尖上的浪费”仍有发生疫情之下,全球近690000000人处于饥饿状态习总书记居安思危,以身作则,亲自践行光盘行动将数据690000000用科学记数法表示为_4、化简(x11)1的结果是 _5、用科学记数法表示0.000085_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:;(2)因式分解:2x332
4、x2、(学习材料)拆项添项法在对某些多项式进行因式分解时,需要把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符号相反的项,这样的分解因式的方法称为拆项添项法,如:例1 分解因式:(解析)解:原式=例2 分解因式:(解析)解:原式=(知识应用)请根据以上材料中的方法,解决下列问题:(1)分解因式:_(2)运用拆项添项法分解因式:(3)化简:3、计算:4、计算:5、计算(1);(2);(3)-参考答案-一、单选题1、D【分析】用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为整数,据此判断即可【详解】故选D【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a1
5、0n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a与n的值是解题的关键2、B【分析】设甲单独完成需要x天,根据题意列出方程即可求出答案【详解】解:设甲单独完成需要x天,由题意可知:两人合作的效率为,甲的效率为31,即故选B【点睛】本题考查分式方程,解题的关键是正确找出题中的等量关系,本题属于基础题型3、D【分析】设实际参加游览的同学共x人,则原有的几名同学每人分担的车费为:元,出发前每名同学分担的车费为:,根据每个同学比原来少摊了3元钱车费即可得到等量关系【详解】解:设实际参加游览的同学共x人,根据题意得:,故选:D【点睛】本题主要考查了分式方程的应用,解题
6、的关键是首先弄清题意,根据关键描述语,找到合适的等量关系;易错点是得到出发前后的人数4、B【分析】根据题意,运用科学计数法的表示方法可直接得出答案,要注意绝对值小于1的数字科学计数法的表示形式为:,其中,n为正整数,n的值由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000014用科学记数法表示为,故选:B【点睛】本题考查了科学计数法的表示方法,属于基础题,正确确定中和的值是解决本题的关键5、A【分析】先根据有理数的乘方,零指数幂计算,然后比较大小,即可求解【详解】解:,故选:A【点睛】本题主要考查了有理数的乘方运算,零指数幂,有理数的比较大小,熟练掌握有理数的乘方运算
7、法则,零指数幂法则是解题的关键6、D【分析】根据完成前一半所用时间+后一半所用时间原计划所用时间2可列出方程【详解】解:设原来每天生产x台呼吸机,根据题意可列方程:2,整理,得:2,故选:D【点睛】本题主要考查由实际问题抽象出分式方程,解题的关键是理解题意找到题目蕴含的相等关系,并根据相等关系列出方程7、D【分析】先将分式方程化为整式方程,再根据分式方程有增根,得到分式方程中的分母2(x-4)等于0,求出m的值即可【详解】,方程有增根,2(x-4)=0,代入上式中,得到,故选:D【点睛】本题主要考查了根据分式方程的增根确定其方程中字母参数值的问题,属于基础题,难度一般,明白使方程的分母为0的解
8、称为原分式方程的增根是解题关键8、A【分析】根据,即可得到,由此即可得到答案【详解】解:,故选A【点睛】本题主要考查了有理数比较大小,负整数指数幂,解题的关键在于能够熟练掌握实数比较大小的方法9、B【分析】根据移项可得,将化为,根据非负数的性质确定的值,进而求得的值,代入代数式求解即可【详解】将移项可得, 解得代入解得故选B【点睛】本题考查了完全平方公式的应用,非负数的性质,负整指数幂的计算,根据完全平方公式变形是解题的关键10、B【分析】根据分母中含有字母,可判断A不正确,根据单项式定义可判断B正确;根据单项式系数定义可判断C不正确;根据多项式的次数定义可判断D不正确【详解】解:A. 分母中
9、有字母,是分式,不是整式,故选项A不正确;B. 和0都是单项式,故选项B正确;C. 单项式的系数为,不是,故选项C不正确;D. 多项式中单项式是4次,所以多项式的次数是4而不是3,故选项D不正确故选择B【点睛】本题考查分式与整式的区别,单项式,单项式系数,多项式次数,熟练掌握相关定义是解题关键二、填空题1、【分析】根据同底数幂的乘法,积的乘方的逆运算以及零指数幂求解即可【详解】解:故答案为:【点睛】此题考查了同底数幂的乘法,积的乘方的逆运算以及零指数幂,掌握它们的运算规则是解题的关键2、11【分析】a23a10两边同时除以a得,即可得,再给两边同时平方有,开方得,移向即得【详解】a23a10,
10、且a0,故答案为:11【点睛】本题考查了已知式子值求代数式的值,将已知式子通过计算化简为所求代数式的形式是解题的关键3、6.9108【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同【详解】解:将数据690000000用科学记数法表示为6.9108故答案为:6.9108【点睛】此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值4、且【分析】根据ap(a0,p为正整数)先计算x1,再计算括号里面的减法,然后再次计算
11、()1即可【详解】解:原式(1)1()1故答案为:且【点睛】此题主要考查了负整数指数幂,关键是掌握负整数指数为正整数指数的倒数5、8.5105【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.000085用科学记数法可以表示为8.5105故答案为:8.5105【点睛】本题主要考查了科学计数法,解题的关键在于能够熟练掌握科学计数法的定义三、解答题1、(1)1;(2)【分析】(1)利用算术平方根、零指数幂以及负整数指数幂的运算法则解决此问题(2)先用提公因式法
12、,再用公式法进行因式分解【详解】解:(1)(2)【点睛】本题主要整数指数幂、因式分解,熟练掌握整数指数幂、因式分解是解决本题的关键2、(1);(2);(3)【分析】(1)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(2)根据题意利用拆项添项法,并结合完全平方公式和平方差公式进行因式分解;(3)根据题意利用拆项添项法对分式的分子进行因式分解,然后再约分化简【详解】解:(1),;(2),;(3),原式【点睛】本题考查因式分解,理解题意,并熟练掌握完全平方公式和平方差公式的公式结构是关键3、【分析】利用绝对值的意义、幂的乘方法则和积的乘方法则的逆用以及负整数指数幂及零指数幂法
13、则逐步计算即可求得答案【详解】解:原式【点睛】本题考查了实数的混合运算,熟练掌握绝对值的意义、幂的乘方法则和积的乘方法则的逆用以及负整数指数幂及零指数幂法则是解决本题的关键4、1【分析】直接利用零指数幂的性质、立方根的性质、算术平方根的性质分别化简得出答案【详解】原式4121【点睛】本题主要考查了零指数幂、立方根的、算术平方根,解题的关键在于能够熟练掌握相关计算法则5、(1)5.125;(2);(3)【分析】(1)根据负整数指数幂法则,零指数幂法则以及幂的乘方法则的逆用及积的乘方法则的逆用逐步计算即可;(2)根据积的乘方法则及单项式乘单项式法则、单项式除以单项式法则逐步计算即可;(3)先将原式变形为,再利用平方差公式及完全平方公式计算即可【详解】解:(1)原式;(2)原式;(3)原式【点睛】本题考查了实数的混合运算及整式的混合运算,熟练掌握相关运算法则及乘法公式是解决本题的关键