《人教版九年级数学下册第二十七章-相似定向攻克试题(含答案及详细解析).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十七章-相似定向攻克试题(含答案及详细解析).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十七章-相似定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AC=3,BC=6,D为BC边上的一点,且BAC=ADC若ADC的面积为a,则ABC的面积为(
2、)ABCD2、如图,BC2,则AB的长为( )A6B5C4D33、如图,线段两个端点的坐标分别为,以原点为位似中心,在第一象限内将线段缩小为原来的后得到线段,则端点的坐标为( )ABCD4、如图,在平面直角坐标系中,ABC的顶点A在第二象限,点B坐标为(2,0),点C坐标为(1,0),以点C为位似中心,在x轴的下方作ABC的位似图形ABC若点A的对应点A的坐标为(2,3),点B的对应点B的坐标为(1,0),则点A坐标为()A(3,2)B(2,)C(,)D(,2)5、若,则的值为( )ABCD6、如图,平行四边形OABC的顶点O(0,0),A(1,2),点C在x轴的正半轴上,延长BA交y轴于点D
3、将ODA绕点O顺时针旋转得到ODA,当点D的对应点D落在OA上时,DA的延长线恰好经过点C,则点B的坐标为( )A(2,2)B(2,2)C(21,2)D(21,2)7、若两个等腰直角三角形斜边的比是1:3,则它们的面积比是()A1:4B1:6C1:9D1:108、一种数学课本的宽与长之比为黄金比,已知它的长是26cm,那么它的宽是()cmA26+26B2626C13+13D13139、若,则为( )A1:2B2:1C2:3D1:310、如图,D、E分别是ABC的边AB、BC上的点,且DEAC,若BEEC13,则DOE与COA的周长之比为( )ABCD第卷(非选择题 70分)二、填空题(5小题,
4、每小题4分,共计20分)1、在ABC中,点D、E分别在AB、AC上,AEDB,如果AB2,ADE的面积为4,四边形BCED的面积为5,那么AE的长为 _2、如果两个相似三角形对应高的比为6,那么这两个三角形的相似比是_3、如图,已知ABC和ABC是以点C为位似中心的位似图形,且ABC和ABC的周长之比为1:2,点C的坐标为(1,0),若点B的对应点B的横坐标为5,则点B的横坐标为 _4、如图,在平面直角坐标系中,为坐标原点,在轴正半轴上,四边形为平行四边形,反比例函数的图象经过点与边相交于点,若,则_ 5、如图,直线与x轴、y轴分别交于点B、A,点C是x轴上一动点,以C为圆心,为半径的作,当与
5、直线AB相切时,点C的坐标为_三、解答题(5小题,每小题10分,共计50分)1、在如图所示的平面直角系中,已知,(方格中每个小正方形的边长均为1个单位)(1)画出;(2)以原点为位似中心,相似比为2,在第一象限内将放大,画出放大后的图形,并写出点的坐标 2、如图,在矩形ABCD中,E是BC的中点,DFAE,垂足为F(1)求证:ABEDFA;(2)若AB6,BC4,求DF的长3、如图所示,在RtABC中,B90,AB6cm,BC8cm,点P由点A出发,沿AB边以1cm/s的速度向点B移动;点Q由点B出发,沿BC边以2cm/s的速度向点C移动如果点P,Q分别从点A,B同时出发,问:(1)经过几秒后
6、,PBQ的面积等于8cm2?(2)经过几秒后,两个三角形相似4、如图,在66的方格纸ABCD中给出格点O和格点EFG,请按要求画格点三角形(顶点在格点上)(1)在图1中画格点OPQ,使点P,Q分别落在边AD,BC上,且POQ90;(2)在图2中画格点GMN,使它与EFG相似(但不全等)5、如图,已知AB是O的直径,锐角DAB的平分线AC交O于点C,作CDAD,垂足为D,直线CD与AB的延长线交于点E(1)求证:直线CD为O的切线;(2)当AB2BE,且CE时,求AD的长-参考答案-一、单选题1、A【解析】【分析】证得ABCDAC后由面积比为相似比的平方即可求得ABC的面积【详解】BAC=ADC
7、,C=CABCDAC又AC=3,BC=6AC:BC=1:2ABCDAC相似比为2:1则ABCDAC面积比为4:1DAC的面积为aABC的面积为4a故选:A【点睛】本题考查了相似三角形判断及性质,相似三角形的对应边成比例,对应角相等,相似三角形的对应高的比,对应中线的比,对应角平分线的比都等于相似比,相似三角形的周长比等于相似比,相似三角形的面积比等于相似比的平方2、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键3、A【解析】【
8、分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标【详解】解:线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,端点C的横坐标和纵坐标都变为A点的一半,端点C的坐标为:(3,3)故选:A【点睛】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键4、C【解析】【分析】如图,过点A作AEx轴于E,过点A作AFx轴于F利用相似三角形的性质求出AE,OE,可得结论【详解】解:如图,过点A作AEx轴于E,过点A作AFx轴于FB(-2,0),C(-1,0),B(1,0),A(2,-3)OB=2
9、,OC=OB=1,OF=2,AF=3,BC=1,CB=2,CF=3,ABCABC,ACE=ACF,AEC=AFC=90,AECAFC,故选:C【点睛】本题考查位似变换,坐标与图形性质,相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题5、A【解析】【分析】设,可得,再代入求值即可【详解】解: , 设, ,故选:A【点睛】本题考查的是比例的基本性质,求代数式的值,掌握设参数法解决比例问题是解题的关键6、D【解析】【分析】连接,由题意可证明,利用相似三角形线段成比例即可求得OC的长,再由平行线的性质即可得点的坐标【详解】解:如图,连接,轴,绕点顺时针旋转得到,点B
10、的坐标为:,故选:D【点睛】本题考查了旋转的性质,勾股定理,相似三角形的判定与性质,平行线的性质,利用相似三角形的性质得到线段的比例是解题关键7、C【解析】【分析】根据相似三角形的判定与性质即可得出答案【详解】解:如图,ABC与DEF都为等腰直角三角形,且EF:AB1:3,则ABCEFD,故选:C【点睛】本题主要考查了等腰直角三角形的性质,相似三角形的判定与性质等知识,熟练掌握相似三角形的性质是解题的关键8、D【解析】【分析】根据一种数学课本的宽与长之比为黄金比,即可得到宽:长,由此求解即可【详解】解:一种数学课本的宽与长之比为黄金比,宽:长,长是26cm,宽,故选D【点睛】本题主要考查了黄金
11、比,解题的关键在于能够熟练掌握黄金分割比例9、A【解析】【分析】可写成的形式,解得的值,即可得到的值【详解】解:可写成故选A【点睛】本题考察了比例,多项式与单项式的除法解题的关键在于将比例的符号作为除号或分号进行处理10、B【解析】【分析】根据DEAC,可得BDEBAC,ODEOCA,从而得到 ,再根据相似三角形的周长比等于相似比,即可求解【详解】解:DEAC,BDEBAC,ODEOCA, ,BEEC13, ,DOE与COA的周长之比为故选:B【点睛】本题主要考查了相似三角形的判定和性质,熟练掌握相似三角形的周长比等于相似比是解题的关键二、填空题1、【解析】【分析】由,是公共角,根据有两角对应
12、相等的三角形相似,即可证得,又由相似三角形面积的比等于相似比的平方,即可得到结论【详解】解:,的面积为4,四边形的面积为5,的面积为9,故答案为:【点睛】本题考查了相似三角形的判定与性质,掌握有两角对应相等的三角形相似与相似三角形面积的比等于相似比的平方定理的应用是解题的关键2、6【解析】【分析】相似三角形的一切对应线段(包括对应高)的比等于相似比,由此可求得这两相似三角形的相似比【详解】解:两个相似三角形对应高的比为6,它们的相似比为6,故答案是:6【点睛】本题主要考查的是相似三角形的性质,解题的关键是掌握相似三角形一切对应线段(包括对应边、对应高、对应中线、对应角平分线等)的比等于相似比3
13、、-4【解析】【分析】过点B作BDx轴于点D,过点B作BHx于点H,则BDBH,可得BCDBCH,从而,再由相似三角形的周长之比等于相似比,可得,继而得到,即可求解【详解】解:如图,过点B作BDx轴于点D,过点B作BHx于点H,则BDBH,DBC=HBC,BDC=BHC,BCDBCH,ABC和ABC的周长之比为12,点C的坐标为(1,0),点B的对应点B的横坐标为5,OC1,OH5,CH6,3,ODOC+CD=1+3=4,点B的横坐标为4故答案为:【点睛】本题主要考查了位似图形,相似三角形的判定和性质,熟练掌握位似图形,相似三角形的判定和性质定理是解题的关键4、【解析】【分析】如图,过点D作D
14、Ex轴于点E,过点B作BFx轴于点F,连接AD,OD由DEBF,推出,设DE2a,则BF3a,则D( ,2a),A( ,3a);用a表示CE,CF,构建方程即可解决问题.【详解】解:如图,过点D作DEx轴于点E,过点B作BFx轴于点F,连接AD,OD, 而CD:BD2:1,设DE2a,则BF3a,则D(,2a),A(,3a),SABC10,CD2BD,SADC,SADCSODC,OCDE,OC,ABOC,B(,3a)CE,CF,解得k24经检验:符合题意,故答案为:24【点睛】本题考查反比例函数的性质,平行四边形的性质,相似三角形的判定与性质,三角形的面积等知识,解题的关键是学会利用参数解决问
15、题5、或#(7,0)或(-3,0)【解析】【分析】分两种情况:设C(0,t),作CMAB于M,如图,利用勾股定理计算出AB=,利用切线的性质得CMO=90,证明BMCBOA,利用相似比可计算出t=-3;同样证明BNCBOA,利用相似三角形的性质计算出t=7,从而得到C点坐标【详解】解:当点C在x轴的负半轴上,设C(t,0),作CMAB于M,如图,对于,当x=0时,y=1;当y=0时,x=2A(0,1),B(2,0)OA=1,OB=2,BC=2-t由勾股定理得, 直线AB与圆C相切,CMB=90又,BMCBOA,即 解得, 点C的坐标为(-3,0)当点C在x轴的正半轴上,设C(t,0),作CNA
16、B于N,如图,BC=t-2, BNCBOA,即 解得, 点C的坐标为(7,0)综上,点C的坐标为(-3,0)或(7,0)故答案为(-3,0)或(7,0)【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点也考查了坐标与图形性质和分类讨论思想的应用以及相似三角形的判定与性质三、解答题1、(1)见解析;(2)(6,6)【解析】【分析】(1)在坐标系中先描点,然后依次连接即可得;(2)根据题意中位似中心及相似比先确定点的坐标,然后依次连接即可得【详解】解:(1)在坐标系中先描点,然后依次连接,如图所示:即为所求;(2)A-3,-3,B-1,-3,C-1,-
17、1,根据位似中心及相似比可得:A16,6,B12,6,C12,2,然后依次连接即可得,A1B1C1即为所求;故答案为:6,6【点睛】题目主要考查位似图形作法及确定点的坐标,熟练掌握位似图形的作法是解题关键2、(1)见解析;(2)DF=6510【解析】【分析】(1)由矩形性质得ADBC,进而由平行线的性质得AEB=DAF,再根据两角对应相等的两个三角形相似;(2)由E是BC的中点,求得BE,再由勾股定理求得AE,再由相似三角形的比例线段求得DF【详解】解:(1)四边形ABCD是矩形,ADBC,B=90,DAF=AEB,DFAE,AFD=B=90,ABEDFA;(2)E是BC的中点,BC=4,BE
18、=2,AB=6,AE=AB2+BE2=62+22=210,四边形ABCD是矩形,AD=BC=4,ABEDFA,ABDF=AEAD,DF=ABADAE=64210=6510【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键是证明三角形相似3、(1)2秒或4秒;(2)或1811秒【解析】【分析】(1)设经过x秒后,PBQ的面积等于8cm2,根据三角形面积公式列一元二次方程,解方程,问题得解;(2)设经过y秒后,BPQ与BAC相似,根据B=B,分BPQBAC和BPQBCA两种情况讨论,根据比例式列出方程,解方程,问题得解【详解】解:(1)设经过x秒后,PBQ的面积等于8cm2,
19、由题意得122x6-x=8,解得x1=2,x2=4,答:经过2秒或4秒后,PBQ的面积等于8cm2(2)设经过y秒后,BPQ与BAC相似,B=B,当BPBA=BQBC时,BPQBAC,即6-y6=2y8,解得y= ;当BPBC=BQBA时,BPQBCA,即6-y8=2y6,解得y= 1811;答:进过或1811秒后,两个三角形相似【点睛】本题考查了一元二次方程的应用,相似三角形形的判定,根据题意列出方程是解题关键,注意两个三角形相似没有指明对应边,故要分类讨论4、(1)见解析;(2)见解析【解析】【分析】(1)利用正方形的性质,将作为44组成的正方形的对角线,将作为22组成的正方形的对角线,即
20、可得到;(2)根据且不全等,作即可实现【详解】解:(1)如图:满足题意;(2)如图:作,即满足题意;【点睛】本题考查了作直角三角形,相似三角形,解题的关键是掌握三角形相似的判定定理及作图能力5、(1)见解析;(2)32【解析】【分析】(1)根据角平分线的意义以及等腰三角形等边对等角证明ADCO,即可得出结论;(2)由已知得OE2OC,在RtEOC中,设COx,即OE2x,由勾股定理得:CEx,由此能求出AD【详解】解:(1)如图,连接OC,AC平分DAB,DACCAB,OAOC,OCACAB,OCADAC,ADCO,CDAD,OCCD,OC是O直径且C在半径外端,CD为O的切线;(2)解:直径AB2BE,OE2OC,在RtEOC中,设COx,即OE2x,由勾股定理得:CEx,又CE,x1,即OC1,OCAD,EOCEAD,OCAD=OEAE,即1AD=23,解得AD32【点睛】本题考查了切线的判定,平行线的判定与性质,勾股定理,相似三角形的判定与性质,熟练掌握基础知识是解本题的关键